Bruger:AstroOgier/MW/Helioseismologi

Fra Wikipedia, den frie encyklopædi
Spring til navigation Spring til søgning
Illustration af en p-modus i Solens indre med radial orden n = 14, angulær grad l = 20 og azimutal orden m = 16. På overfladen ses den tilhørende kuglefladefunktion. I det indre ses radiale forskydninger beregnet ved hjælp af en standardmodel for Solen.[1] Bemærk, at da den lokale lydhastighed vokser, når man nærmer sig Solens centrum, så vokser den tilhørende akkustiske bølgelængde.

Helioseismologi er et udtrykt skabt af den skotske astrofysiker Douglas Gough. Det beskriver studiet af Solens struktur og dynamik ved hjælp af de svingninger, som den udfører. Disse skyldes hovedsageligt lydbølger, som frembringes og også dæmpes af convektion (stofbevægelse) nær Solens overflade. Der er analogt med geoseismologi og med asteroseismologi (også præget af Gough), som er de tilsvarende studier af henholdsvis Jorden or stjernerne ud fra deres svingninger. Svingninger på Solen blev påvist allerede i begyndelsen af 1960'erne, men først i midten af 1970-erne erkendte man, at svingningerne trænger hele vejen gennem Solen og derfor muliggør undersøgelse af Solens dybe indre. I dag er feltet delt op i global helioseismologi, der studerer Solens resonanstilstande og lokal helioseismologi, som undersøger alle de bølger, som når frem til Solens overflade.[2]

Helioseismologien har medvirket til et antal videnskabelige gennembrud. Det mest bemærkelsesværdige var at fremkomme med løsningen på det alvorlige solneutrino-problem, nemlig at man eksperimentelt kun målte en trediedel af de neutrinoer, som man ifølge modeller for Solen skulle forvente; neutrinoer en næsten masseløse elementarpartikler, som dannes ved vel forståede kernereaktioner i Solens kerne, og som uden problemer bevæger sig tværs gennem Solen. De helioseimologiske undersøgelser støttede de eksisterende solmodeller og skød dermed problemtes løsning over til partikelfysikken. Solneutrinoproblemet fandt da også sin løsning med opdagelsen af neutrinooscillationer.[3][4]: Neutrinoer findes ifølge elementarpertikelfysikken i tre forskellige varianter, og det viste sig at de skiftede "ham" på vej til Jorden, iden fysikernes neutrinodetektorer kun kunne registrere én af de tre typer. Den eksperimentelle påvisning af neutrinooscillationer udløste Nobelprisen i fysik for 2015.[5] Helioseismologien muliggjorde endvidere nøjagtige målinger af kvadrupolmomentet (og momenter af højere orden) af Solens gravitationspotential, som viste sig at være i overensstemmelse med generel relativitetsteori. De første helioseismologiske beregninger af Solens indre rotation viste, at medens de ydre lag roterer differentielt, altså med rotationstider, der varierer med breddegraden (ca. 25 døgn ved ækvator og over 30 døgn ved polerne), så roterer kernen som var den et fast legeme (alle dele har samme rotationstid). Det lag, som adskiller de to rotationsdomæner, kaldes en tachoklin[6] og det menes at være kilden til Solens magnetfelt.[7] Dette lag falder næsten sammen med bunden af Solens konvektionszone (hvis dybde også er bestemt ved hjælp af helioseismologi, men de to begreber er uafhæmgige af hinanden.

Helioseismology benefits most from continuous monitoring of the Sun, which began first with uninterrupted observations from near the South Pole over the southern summer.[8] In addition, observations over multiple solar cycles have allowed helioseismologists to study changes in the Sun's structure over decades. These studies are made possible by global telescope networks like the Global Oscillations Network Group (GONG) and the Birmingham Solar Oscillations Network (BiSON), which have been operating for over 20 years.

Types of solar oscillation[redigér | redigér wikikode]

A propagation diagram for a standard solar model[9] showing where oscillations have a g-mode character (blue) or where dipole modes have a p-mode character (orange). The dashed line shows the acoustic cut-off frequency, computed from more precise modelling, and above which modes are not trapped in the star, and roughly-speaking do not resonate.

Solar oscillation modes are interpreted (to first order) as vibrations of a spherically symmetric self-gravitating fluid in hydrostatic equilibrium. Each mode is then characterised by three numbers:

  • the number of nodal shells in radius, known as the radial order ;
  • the total number of nodal circles on each spherical shell, known as the angular degree ; and
  • the number of those nodal circles that are longitudinal, known as the azimuthal order .

The latter two correspond to the quantum numbers of the spherical harmonics. Under these assumptions, it can be shown that the oscillations are separated into two categories of interior oscillations and a third special category of surface modes.

Pressure modes (p-modes)[redigér | redigér wikikode]

Pressure modes are in essence standing sound waves. The dominant restoring force is the pressure (rather than buoyancy), hence the name. All the solar oscillations that are used for inferences about the interior are p-modes, with frequencies between about 1 and 5 millihertz. They span angular degrees from zero (purely radial motion) to several hundred.

Gravity modes (g-modes)[redigér | redigér wikikode]

Gravity modes are lower-frequency modes that are confined to the convectively-stable interior. The restoring force is buoyancy and thus indirectly gravity, from which they take their name. They are evanescent in the convection zone and therefore have tiny amplitudes at the surface.[10] No individual g-modes have been detected but indirect detections have been claimed.[11][12]

Surface gravity modes (f-modes)[redigér | redigér wikikode]

Surface gravity waves are analogous to waves on deep water. To good approximation, they follow the same dispersion law: , where is the angular frequency, is the surface gravity and is the horizontal wavenumber. Surface gravity modes observed on the Sun are all of very high degree ().

Data analysis[redigér | redigér wikikode]

Global helioseismology[redigér | redigér wikikode]

Power spectrum of the Sun using data from instruments aboard the Solar and Heliospheric Observatory on double-logarithmic axes. The three passbands of the VIRGO/SPM instrument show nearly the same power spectrum. The line-of-sight velocity observations from GOLF are less sensitive to the red noise produced by granulation. All the datasets clearly show the oscillation modes around 3mHz.
Power spectrum of the Sun around where the modes have maximum power, using data from the GOLF and VIRGO/SPM instruments aboard the Solar and Heliospheric Observatory. The low-degree modes (l<4) show a clear comb-like pattern with a regular spacing.
Power spectrum of medium angular degree () solar oscillations, computed for 144 days of data from the MDI instrument aboard SOHO.[13] The colour scale is logarithmic and saturated at one hundredth the maximum power in the signal, to make the modes more visible. The low-frequency region is dominated by the signal of granulation. As the angular degree increases, the individual mode frequencies converge onto clear ridges, each corresponding to a sequence of low-order modes.

The chief tool for analysing data in global helioseismology is the Fourier transform. To good approximation, each mode is a damped harmonic oscillator, for which the power as a function of frequency is a Lorentz function. Resolved data is usually integrated over the desired spherical harmonic to obtain a single timeseries that can be Fourier transformed. In this way, helioseismologists combine a power spectrum for each spherical harmonic into a two-dimensional power spectrum.

The lower frequency range of the oscillations is dominated by the variations caused by granulation. This must first be filtered out before (or at the same time that) the modes are analysed. Granular flows at the solar surface are mostly horizontal, from the centres of the rising granules to the narrow downdrafts between them. Relative to the oscillations, granulation produces a stronger signal in intensity than line-of-sight velocity, so the latter is preferred for helioseismic observatories.

Local helioseismology[redigér | redigér wikikode]

Local helioseismology—a term coined by Charles Lindsey, Doug Braun and Stuart Jefferies in 1993[14]—employs several different analysis methods to make inferences from the observational data.[2]

  • The Fourier–Hankel spectral method was originally used to search for wave absorption by sunspots.[15]
  • Ring-diagram analysis, first introduced by Frank Hill,[16] is used to infer the speed and direction of horizontal flows below the solar surface by observing the Doppler shifts of ambient acoustic waves from power spectra of solar oscillations computed over patches of the solar surface (typically 15° × 15°). Thus, ring-diagram analysis is a generalization of global helioseismology applied to local areas on the Sun (as opposed to half of the Sun). For example, the sound speed and adiabatic index can be compared within magnetically active and inactive (quiet Sun) regions.[17]
  • Time-distance helioseismology[18] aims to measure and interpret the travel times of solar waves between any two locations on the solar surface. Inhomogeneities near the ray path connecting the two locations perturb the travel time between those two points. An inverse problem must then be solved to infer the local structure and dynamics of the solar interior.[19]
  • Helioseismic holography, introduced in detail by Charles Lindsey and Doug Braun for the purpose of far-side (magnetic) imaging,[20] is a special case of phase-sensitive holography. The idea is to use the wavefield on the visible disk to learn about active regions on the far side of the Sun. The basic idea in helioseismic holography is that the wavefield, e.g., the line-of-sight Doppler velocity observed at the solar surface, can be used to make an estimate of the wavefield at any location in the solar interior at any instant in time. In this sense, holography is much like seismic migration, a technique in geophysics that has been in use since the 1940s. As another example, this technique has been used to give a seismic image of a solar flare.[21]
  • In direct modelling, the idea is to estimate subsurface flows from direct inversion of the frequency-wavenumber correlations seen in the wavefield in the Fourier domain. Woodard[22] demonstrated the ability of the technique to recover near-surface flows the f-modes.

Inversion[redigér | redigér wikikode]

Introduction[redigér | redigér wikikode]

The Sun's oscillation modes represent a discrete set of observations that are sensitive to its continuous structure. This allows scientists to formulate inverse problems for the Sun's interior structure and dynamics. Given a reference model of the Sun, the differences in the mode frequencies are weighted averages of the differences between the structure of the reference model and the real Sun. The difference in the mode frequencies can then be used to infer the differences in the structures. The weighting functions of these averages are known as kernels.

Structure[redigér | redigér wikikode]

The first inversions of the Sun's structure were made using Duvall's law[23] and later using Duvall's law linearised about a reference solar model.[24] These results were superseded by analyses that use the full set of equations describing the stellar oscillations[25] and are now the standard way to compute inversions.[26] The inversions demonstrated differences in solar models that were greatly reduced by implementing gravitational settling: the gradual separation of heavier elements towards the solar centre (and lighter elements to the surface to replace them).[27][28]

Rotation[redigér | redigér wikikode]

The internal rotation profile of the Sun inferred using data from the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory. The inner radius has been truncated where the measurements are less certain than 1%, which happens around 3/4 of the way to the core. The dashed line indicates the base of the solar convection zone, which happens to coincide with the boundary at which the rotation profile changes, known as the tachocline.

If the Sun were perfectly spherical, the modes with different azimuthal orders m would have the same frequencies. Rotation, however, breaks this degeneracy, and the modes frequencies differ by rotational splittings that are weighted-averages of the rotation rate throughout the Sun. Different modes are sensitive to different parts of the Sun and, given enough data, these differences can be used to infer the rotation rate throughout the Sun.[29] For example, if the Sun rotated with the same rotational frequency throughout, then all the modes would be split by the same amount. In reality, different layers of the Sun rotate at different speeds, as can be seen at the surface, where the equator rotates faster than the poles.[30] The Sun rotates slowly enough that a spherical, non-rotating model serves as close enough to reality to derive the rotational kernels.

Helioseismology has shown that the Sun has a rotation profile with several features:[31]

  • a rigidly-rotating radiative (i.e. non-convective) zone, though the rotation rate of the inner core is not well known;
  • a thin shear layer, known as the tachocline, which separates the rigidly-rotating interior and the differentially-rotating convective envelope;
  • a convective envelope in which the rotation rate varies both with depth and latitude; and
  • a final shear layer just beneath the surface, in which the rotation rate slows down towards the surface.

Relationship to other fields[redigér | redigér wikikode]

Geoseismology[redigér | redigér wikikode]

Nuvola apps download manager2-70%.svg Hovedartikel: Seismology.

Helioseismology was born from analogy with geoseismology but several important differences remain. First, the Sun lacks a solid surface and therefore cannot support shear waves. From the data analysis perspective, global helioseismology differs from geoseismology by studying only normal modes. Local helioseismology is thus somewhat closer in spirit to geoseismology in the sense that it studies the complete wavefield.

Asteroseismology[redigér | redigér wikikode]

Nuvola apps download manager2-70%.svg Hovedartikel: Asteroseismology.

Because the Sun is a star, helioseismology is closely related to the study of oscillations in other stars, known as asteroseismology. Helioseismology is most closely related to the study of stars whose oscillations are also driven and damped by their outer convection zones, known as solar-like oscillators, but the underlying theory is broadly the same for other classes of variable star.

The principal difference is that oscillations in distant stars cannot be resolved. Because the brighter and darker sectors of the spherical harmonic cancel out, this restricts asteroseismology almost entirely to the study of low degree modes (angular degree ). This makes inversion much more difficult but upper limits can still be achieved by making more restrictive assumptions.

History[redigér | redigér wikikode]

Solar oscillations were first observed in the early 1960s[32][33] as a quasi-periodic intensity and line-of-sight velocity variation with a period of about 5 minutes. Scientists gradually realised that the oscillations might be global modes of the Sun and predicted that the modes would form clear ridges in two-dimensional power spectra.[34][35] The ridges were subsequently confirmed in observations in the mid 1970s[36][37] although individual mode frequencies were not measured until several years later.[38] At a similar time, Jørgen Christensen-Dalsgaard and Douglas Gough suggested the potential of using individual mode frequencies to infer the interior structure of the Sun.[39]

Helioseismology developed rapidly in the 1980s. A major breakthrough was made when observations from Antarctica linked the frequencies for modes of low and intermediate angular degree, from which the radial orders of the modes could be identified.[8] In addition, new methods of inversion developed, allowing researchers to infer the sound speed profile of the Sun. Towards the end of the decade, observations also began to show that the oscillation mode frequencies vary with the Sun's magnetic activity cycle.[40]

To overcome the problem of not being able to observe the Sun at night, several groups had begun to assemble networks of telescopes (e.g. the Birmingham Solar Oscillations Network, or BiSON,[41][42] and the Global Oscillation Network Group[43]) from which the Sun would always be visible to at least one node. Long, uninterrupted observations brought the field to maturity, and the state of the field was summarized in a 1996 special issue of Science magazine.[44] This coincided with the start of normal operations of the Solar and Heliospheric Observatory (SoHO), which began producing high-quality data for helioseismology.

The subsequent years saw the resolution of the solar neutrino problem and the long observations began to allow analysis of multiple solar activity cycles.[45] The agreement between standard solar models and helioseismic inversions[46] was disrupted by new measurements of the heavy element content of the solar photosphere based on detailed three-dimensional models.[47] Though the results later shifted back towards the traditional values used in the 1990s,[48] the new abundances significantly worsened the agreement between the models and helioseismic inversions.[49] The cause of the discrepancy remains unsolved and is known as the solar abundance problem.

Space-based observations by SoHO have continued and SoHO was joined in 2010 by the Solar Dynamics Observatory (SDO), which has also been monitoring the Sun continuously since its operations began. In addition, ground-based networks (notably BiSON and GONG) continue to operate, providing nearly continuous data from the ground too.

See also[redigér | redigér wikikode]

References[redigér | redigér wikikode]

  1. ^ Christensen-Dalsgaard, J.; Dappen, W.; Ajukov, S. V.; Anderson, E. R.; Antia, H. M.; Basu, S.; Baturin, V. A.; Berthomieu, G.; Chaboyer, B.; Chitre, S. M.; Cox, A. N.; Demarque, P.; Donatowicz, J.; Dziembowski, W. A.; Gabriel, M.; Gough, D. O.; Guenther, D. B.; Guzik, J. A.; Harvey, J. W.; Hill, F.; Houdek, G.; Iglesias, C. A.; Kosovichev, A. G.; Leibacher, J. W.; Morel, P.; Proffitt, C. R.; Provost, J.; Reiter, J.; Rhodes, Jr. E. J.; Rogers, F. J.; Roxburgh, I. W.; Thompson, M. J.; Ulrich, R. K. (1996), "The Current State of Solar Modeling", Science, 272 (5266): 1286–92, Bibcode:1996Sci...272.1286C, PMID 8662456, doi:10.1126/science.272.5266.1286. 
  2. ^ a b Gizon, L.; Birch, A. C. (2005), "Local Helioseismology", Living Reviews in Solar Physics, 2: 6, Bibcode:2005LRSP....2....6G, doi:10.12942/lrsp-2005-6. 
  3. ^ Bahcall, J. N.; Concha, Gonzalez-Garcia M.; Pe\, na-Garay C. (2001), "Global analysis of solar neutrino oscillations including SNO CC measurement", Journal of High Energy Physics, 8: 014, Bibcode:2001JHEP...08..014B, arXiv:hep-ph/0106258free to read, doi:10.1088/1126-6708/2001/08/014. 
  4. ^ Bahcall, J. N. (2001), "High-energy physics: Neutrinos reveal split personalities", Nature, 412 (6842): 29–31, Bibcode:2001Natur.412...29B, PMID 11452285, doi:10.1038/35083665. 
  5. ^ Webb, Jonathan (6. oktober 2015). "Neutrino 'flip' wins physics Nobel Prize". BBC News. 
  6. ^ Spiegel, E. A.; Zahn, J.-P. (1992), "The solar tachocline", Astronomy and Astrophysics, 265: 106, Bibcode:1992A&A...265..106S. 
  7. ^ Fan, Y. (2009), "Magnetic Fields in the Solar Convection Zone", Living Reviews in Solar Physics, 6: 4, Bibcode:2009LRSP....6....4F, doi:10.12942/lrsp-2009-4. 
  8. ^ a b Duvall, Jr. T. L.; Harvey, J. W. (1983), "Observations of solar oscillations of low and intermediate degree", Nature, 302: 24, Bibcode:1983Natur.302...24D, doi:10.1038/302024a0. 
  9. ^ Christensen-Dalsgaard, J.; Dappen, W.; Ajukov, S. V. and (1996), "The Current State of Solar Modeling", Science, 272 (5266): 1286, Bibcode:1996Sci...272.1286C, PMID 8662456, doi:10.1126/science.272.5266.1286. 
  10. ^ Appourchaux, T.; Belkacem, K.; Broomhall, A.-M.; Chaplin, W. J.; Gough, D. O.; Houdek, G.; Provost, J.; Baudin, F.; Boumier, P.; Elsworth, Y.; Garc\'\ia, R. A.; Andersen, B. N.; Finsterle, W.; Fr\ohlich, C.; Gabriel, A.; Grec, G.; Jim\'enez, A.; Kosovichev, A.; Sekii, T.; Toutain, T.; Turck-Chi\`eze, S. (2010), "The quest for the solar g modes", Astronomy and Astrophysics Review, 18: 197, Bibcode:2010A&ARv..18..197A, arXiv:0910.0848free to read, doi:10.1007/s00159-009-0027-z. 
  11. ^ Garc\'\ia, R. A.; Turck-Chi\`eze, S.; Jim\'enez-Reyes, S. J.; Ballot, J.; Pall\'e, P. L.; Eff-Darwich, A.; Mathur, S.; Provost, J. (2007), "Tracking Solar Gravity Modes: The Dynamics of the Solar Core", Science, 316 (5831): 1591–3, Bibcode:2007Sci...316.1591G, PMID 17478682, doi:10.1126/science.1140598. 
  12. ^ Fossat, E.; Boumier, P.; Corbard, T.; Provost, J.; Salabert, D.; Schmider, F. X.; Gabriel, A. H.; Grec, G.; Renaud, C.; Robillot, J. M.; Roca-Cort\'es, T.; Turck-Chi\`eze, S.; Ulrich, R. K.; Lazrek, M. (2017), "Asymptotic g modes: Evidence for a rapid rotation of the solar core", Astronomy and Astrophysics, 604: A40, Bibcode:2017A&A...604A..40F, arXiv:1708.00259free to read, doi:10.1051/0004-6361/201730460. 
  13. ^ Rhodes, Jr. E. J.; Kosovichev, A. G.; Schou, J.; et al. (1997), "Measurements of Frequencies of Solar Oscillations from the MDI Medium-l Program", Solar Physics, 175 (2): 287, Bibcode:1997SoPh..175..287R, doi:10.1023/A:1004963425123. 
  14. ^ Lindsey, C.; Braun, D.C.; Jefferies, S.M. (January 1993). T.M. Brown, (red.). ""Local Helioseismology of Subsurface Structure" in "GONG 1992. Seismic Investigation of the Sun and Stars"". GONG 1992. Seismic Investigation of the Sun and Stars. Proceedings of a Conference held in Boulder. Astronomical Society of the Pacific Conference Series. 42: 81–84. Bibcode:1993ASPC...42...81L. ISBN 0-937707-61-9. 
  15. ^ Braun, D.C.; Duvall, Jr., T.L.; Labonte, B.J. (August 1987). "Acoustic absorption by sunspots". The Astrophysical Journal. 319: L27–L31. Bibcode:1987ApJ...319L..27B. doi:10.1086/184949. 
  16. ^ Hill, F. (October 1988). "Rings and trumpets - Three-dimensional power spectra of solar oscillations". Astrophysical Journal. 333: 996–1013. Bibcode:1988ApJ...333..996H. doi:10.1086/166807. 
  17. ^ Basu, S.; Antia, H.M.; Bogart, R.S. (August 2004). "Ring-Diagram Analysis of the Structure of Solar Active Regions". The Astrophysical Journal. 610 (2): 1157–1168. Bibcode:2004ApJ...610.1157B. doi:10.1086/421843. 
  18. ^ Duvall, Jr., T.L.; Jefferies, S.M.; Harvey, J.W.; Pomerantz, M.A. (April 1993). "Time-distance helioseismology". Nature. 362 (6419): 430–432. Bibcode:1993Natur.362..430D. doi:10.1038/362430a0. 
  19. ^ Jensen, J. M. (2003), Time-distance: what does it tell us?, 517, s. 61, Bibcode:2003ESASP.517...61J. 
  20. ^ Braun, D. C.; Lindsey, C. (2001), "Seismic Imaging of the Far Hemisphere of the Sun", Astrophysical Journal Letters, 560: L189, Bibcode:2001ApJ...560L.189B, doi:10.1086/324323. 
  21. ^ Donea, A.-C.; Braun, D.C.; Lindsey, C. (March 1999). "Seismic Images of a Solar Flare". The Astrophysical Journal. 513 (2): L143–L146. Bibcode:1999ApJ...513L.143D. doi:10.1086/311915. 
  22. ^ Woodard, M. F. (January 2002). "Solar Subsurface Flow Inferred Directly from Frequency-Wavenumber Correlations in the Seismic Velocity Field". The Astrophysical Journal. 565 (1): 634–639. Bibcode:2002ApJ...565..634W. doi:10.1086/324546.  Ukendt parameter |citeseerx= ignoreret (hjælp)
  23. ^ Christensen-Dalsgaard, J.; Duvall, Jr. T. L.; Gough, D. O.; Harvey, J. W.; Rhodes, Jr. E. J. (1985), "Speed of sound in the solar interior", Nature, 315: 378, Bibcode:1985Natur.315..378C, doi:10.1038/315378a0. 
  24. ^ Christensen-Dalsgaard, J.; Thompson, M. J.; Gough, D. O. (1989), "Differential asymptotic sound-speed inversions", MNRAS, 238: 481, Bibcode:1989MNRAS.238..481C, doi:10.1093/mnras/238.2.481. 
  25. ^ Antia, H. M.; Basu, S. (1994), "Nonasymptotic helioseismic inversion for solar structure.", Astronomy & Astrophysics Supplement Series, 107: 421, Bibcode:1994A&AS..107..421A. 
  26. ^ Basu, S. (2016), "Global seismology of the Sun", Living Reviews in Solar Physics, 13: 2, Bibcode:2016LRSP...13....2B, arXiv:1606.07071free to read, doi:10.1007/s41116-016-0003-4. 
  27. ^ Cox, A. N.; Guzik, J. A.; Kidman, R. B. (1989), "Oscillations of solar models with internal element diffusion", Astrophysical Journal, 342: 1187, Bibcode:1989ApJ...342.1187C, doi:10.1086/167675. 
  28. ^ Christensen-Dalsgaard, J.; Proffitt, C. R.; Thompson, M. J. (1993), "Effects of diffusion on solar models and their oscillation frequencies", Astrophysical Journal Letters, 403: L75, Bibcode:1993ApJ...403L..75C, doi:10.1086/186725. 
  29. ^ Thompson, M. J.; Christensen-Dalsgaard, J.; Miesch, M. S.; Toomre, J. (2003), "The Internal Rotation of the Sun", Annual Review of Astronomy & Astrophysics, 41: 599, Bibcode:2003ARA&A..41..599T, doi:10.1146/annurev.astro.41.011802.094848. 
  30. ^ Beck, J. G. (2000), "A comparison of differential rotation measurements - (Invited Review)", Solar Physics, 191: 47, Bibcode:2000SoPh..191...47B, doi:10.1023/A:1005226402796. 
  31. ^ Howe, R. (2009), "Solar Interior Rotation and its Variation", Living Reviews in Solar Physics, 6: 1, Bibcode:2009LRSP....6....1H, arXiv:0902.2406free to read, doi:10.12942/lrsp-2009-1. 
  32. ^ Leighton, R. B.; Noyes, R. W.; Simon, G. W. (1962), "Velocity Fields in the Solar Atmosphere. I. Preliminary Report.", Astrophysical Journal, 135: 474, Bibcode:1962ApJ...135..474L, doi:10.1086/147285. 
  33. ^ Evans, J. W.; Michard, R. (1962), "Observational Study of Macroscopic Inhomogeneities in the Solar Atmosphere. III. Vertical Oscillatory Motions in the Solar Photosphere.", Astrophysical Journal, 136: 493, Bibcode:1962ApJ...136..493E, doi:10.1086/147403. 
  34. ^ Leibacher, J. W.; Stein, R. F. (1971), "A New Description of the Solar Five-Minute Oscillation", Astrophysical Letters, 7: 191, Bibcode:1971ApL.....7..191L. 
  35. ^ Ulrich, R. K. (1970), "The Five-Minute Oscillations on the Solar Surface", Astrophysical Journal, 162: 993, Bibcode:1970ApJ...162..993U, doi:10.1086/150731. 
  36. ^ Deubner, F.-L. (1975), "Observations of low wavenumber nonradial eigenmodes of the sun", Astronomy and Astrophysics, 44: 371, Bibcode:1975A&A....44..371D. 
  37. ^ Rhodes, Jr. E. J.; Ulrich, R. K.; Simon, G. W. (1977), "Observations of nonradial p-mode oscillations on the sun", Astrophysical Journal, 218: 901, Bibcode:1977ApJ...218..901R, doi:10.1086/155745. 
  38. ^ Claverie, A.; Isaak, G. R.; McLeod, C. P.; van, der Raay H. B.; Cortes, T. R. (1979), "Solar structure from global studies of the 5-minute oscillation", Nature, 282: 591, Bibcode:1979Natur.282..591C, doi:10.1038/282591a0. 
  39. ^ Christensen-Dalsgaard, J.; Gough, D. O. (1976), "Towards a heliological inverse problem", Nature, 259: 89, Bibcode:1976Natur.259...89C, doi:10.1038/259089a0. 
  40. ^ Libbrecht, K. G.; Woodard, M. F. (1990), "Solar-cycle effects on solar oscillation frequencies", Nature, 345: 779, Bibcode:1990Natur.345..779L, doi:10.1038/345779a0. 
  41. ^ Aindow, A.; Elsworth, Y. P.; Isaak, G. R.; McLeod, C. P.; New, R.; Vanderraay, H. B. (1988), The current status of the Birmingham solar seismology network, 286, s. 157, Bibcode:1988ESASP.286..157A. 
  42. ^ Chaplin, W. J.; Elsworth, Y.; Howe, R.; Isaak, G. R.; McLeod, C. P.; Miller, B. A.; van, der Raay H. B.; Wheeler, S. J.; New, R. (1996), "BiSON Performance", Solar Physics, 168: 1, Bibcode:1996SoPh..168....1C, doi:10.1007/BF00145821. 
  43. ^ Harvey, J. W.; Hill, F.; Kennedy, J. R.; Leibacher, J. W.; Livingston, W. C. (1988), "The Global Oscillation Network Group (GONG)", Advances in Space Research, 8: 117, Bibcode:1988AdSpR...8..117H, doi:10.1016/0273-1177(88)90304-3. )
  44. ^ "Special Issue: GONG Helioseismology", Science, 272 (5266), 1996. 
  45. ^ Chaplin, W. J.; Elsworth, Y.; Miller, B. A.; Verner, G. A.; New, R. (2007), "Solar p-Mode Frequencies over Three Solar Cycles", Astrophysical Journal, 659: 1749, Bibcode:2007ApJ...659.1749C, doi:10.1086/512543. 
  46. ^ Bahcall, J. N.; Pinsonneault, M. H.; Basu, S. (2001), "Solar Models: Current Epoch and Time Dependences Neutrinos and Helioseismological Properties", Astrophysical Journal, 555: 990, Bibcode:2001ApJ...555..990B, arXiv:astro-ph/0010346free to read, doi:10.1086/321493. 
  47. ^ Asplund, M.; Grevesse, N.; Sauval, A. J. (2005), The Solar Chemical Composition, 336, s. 25, Bibcode:2005ASPC..336...25A. 
  48. ^ Asplund, M.; Grevesse, N.; Sauval, A. J.; Scott, P. (2009), "The Chemical Composition of the Sun", Annual Review of Astronomy & Astrophysics, 47: 481, Bibcode:2009ARA&A..47..481A, arXiv:0909.0948free to read, doi:10.1146/annurev.astro.46.060407.145222. 
  49. ^ Bahcall, J. N.; Basu, S.; Pinsonneault, M.; Serenelli, A. M. (2005), "Helioseismological Implications of Recent Solar Abundance Determinations", Astrophysical Journal, 618: 1049, Bibcode:2005ApJ...618.1049B, arXiv:astro-ph/0407060free to read, doi:10.1086/426070. 

External links[redigér | redigér wikikode]

Satellite instruments[redigér | redigér wikikode]

Ground-based instruments[redigér | redigér wikikode]

Skabelon:The Sun