Bruger:AstroOgier/SI-enhedssystemet

Fra Wikipedia, den frie encyklopædi
SI grundenheder
Symbol Navn Dimension
s sekund tid
m meter længde
kg kilogram masse
A ampere strømstyrke
K kelvin temperatur
mol mol stofmængde
cd candela lysintensitet

SI-systemet er et internationalt anvendt system af enheder til måling af fysiske størrelser. Akronymet SI stammer fra det franske navn Système international d'unités, det internationale enhedssystem. Systemet består af syv grundenheder sekund, meter, kilogram, ampere, kelvin, mol og candela, 22 afledte enheder (for eksempek joule, watt og volt) samt 20 dekadiske præfikser til angivelse af multipla i form af ti-potenser (for eksempel kilo for 103 og nano for 10-9).

SI-systemet har en lang historie, idet det går tilbaget til metersystemet, der blev indført i Frankring i 1790. Systemet vedligeholdes i dag af Generalkonferencen for mål og vægt (fransk: Conférence générale des poids et mesures, forkortet CGPM, som blev oprettet i forbindelse med Meterkonventionen i 1875. De fleste af verdens lande er medlemmer af CGPM, selv om de ikke nødvendigvis benyttet metersystemet. Danmark blev metrificeret ved lov af dd. æææ 1907. Kun tre lande i verden har ikke indført SI-systemet, nemlig USA, Liberia og Myanmar.[1]


The International System of Units (SI, abbreviated from the French Système international (d'unités)) is the modern form of the metric system, and is the most widely used system of measurement. It comprises a coherent system of units of measurement built on seven base units, which are the ampere, kelvin, second, metre, kilogram, candela, mole, and a set of twenty prefixes to the unit names and unit symbols that may be used when specifying multiples and fractions of the units. The system also specifies names for 22 derived units, such as lumen and watt, for other common physical quantities.

The base units are derived from invariant constants of nature, such as the speed of light in vacuum and the triple point of water, which can be observed and measured with great accuracy, and one physical artefact. The artefact is the international prototype kilogram, certified in 1889, and consisting of a cylinder of platinum-iridium, which nominally has the same mass as one litre of water at the freezing point. Its stability has been a matter of significant concern, culminating in a revision of the definition of the base units entirely in terms of constants of nature, scheduled to be put into effect on 20 May 2019.[2]

Derived units may be defined in terms of base units or other derived units. They are adopted to facilitate measurement of diverse quantities. The SI is intended to be an evolving system; units and prefixes are created and unit definitions are modified through international agreement as the technology of measurement progresses and the precision of measurements improves. The most recent derived unit, the katal, was defined in 1999.

The reliability of the SI depends not only on the precise measurement of standards for the base units in terms of various physical constants of nature, but also on precise definition of those constants. The set of underlying constants is modified as more stable constants are found, or may be more precisely measured. For example, in 1983 the metre was redefined as the distance that light propagates in vacuum in a given fraction of a second, thus making the value of the speed of light in terms of the defined units exact.

The motivation for the development of the SI was the diversity of units that had sprung up within the centimetre–gram–second (CGS) systems (specifically the inconsistency between the systems of electrostatic units and electromagnetic units) and the lack of coordination between the various disciplines that used them. The General Conference on Weights and Measures (French: Conférence générale des poids et mesures – CGPM), which was established by the Metre Convention of 1875, brought together many international organisations to establish the definitions and standards of a new system and standardise the rules for writing and presenting measurements. The system was published in 1960 as a result of an initiative that began in 1948. It is based on the metre–kilogram–second system of units (MKS) rather than any variant of the CGS. Since then, the SI has been adopted by all countries except the United States, Liberia and Myanmar.[1]


Definerende konstanter[redigér | rediger kildetekst]

Um die Abhängigkeiten der Basiseinheiten von veränderlichen Größen oder Objekten zu beenden und um die Definition und die Realisierung der Einheiten voneinander zu separieren, wurde auf der Generalkonferenz für Maß und Gewicht (Conférence Générale des Poids et Mesures, CGPM) im Jahre 2014 beschlossen, bis zur nächsten Konferenz 2018 Messverfahren zu entwickeln, welche es erlauben, alle Basiseinheiten auf fundamentale physikalische Konstanten (Naturkonstanten) zurückzuführen, indem man diesen feste Zahlenwerte zuweist und die Einheit daraus ableitet, wie es bisher nur bei den Basiseinheiten Sekunde und Meter der Fall ist. Weil dies den Wissenschaftlern gelungen ist, wurde am 16. November 2018 auf der 26. CGPM diese große Revision beschlossen.[3][4] Die Neudefinitionen werden am 20. Mai 2019, dem Weltmetrologietag, in Kraft treten.[5] Von diesem Tag an sollen folgende Zahlenwerte der Naturkonstanten gelten:

Symbolet læses "defineres som" eller "er per definition lig med".

Frekvensen af hyperfinstrukturovergangen i grundtilstanden af et cæsium-133 atom
(bekræftelse af 1983-definitionen)
Lysets fart i vacuum
(bekræftelse af 1983-definitionen)
Plancks konstant
Elementarladningen
Boltzmanns konstant
Avogadros konstant
Fotometrisk strålingsækvivalent af monokromatisk stråling med frekvensen 540 THz

Den til cæsium-frekvensen hørende bølgelængde er = 3.2612 cm; stråling med denne bølgelængde ligger i mikrobølgeområdet.

Den til candela-frekvensen hørende bølgelængde er = 555.17 nm; lys med denne bølgelængde vil af øjet opleves som gult.

Med disse definitioner bliver det muligt at definere alle SI-systemets syv grundenheder.

Grundenheder[redigér | rediger kildetekst]

Pilene angiver, hvordan de syv definerende konstanter (ydre kreds) indgår i definitionen af de syv grundenheder i SI-systemet (indre kreds). For eksempel fremgår det, at enheden sekund (s) defineres alene ud fra cæsiumfrekvensen , medens enheden kilogram (kg) defineres ved hjælp af Plancks konstant under anvendelse af enhederne s (sekund) og m (meter).

Sekund[redigér | rediger kildetekst]

Sekundet er SI-enheden for tid og tildeles dimensionssymbolet T.

Et sekund er varigheden af 9 192 631 770 svingninger af lys med cæsiumfrekvensen .

Oprindeligt blev sekundet defineret ud fra Jordens synodiske rotationstid. Da et døgn indeholder 24·60·60 = 86400 sekunder, blev enheden defineret som 1/86400 af et døgn. Men da målinger blev tilstrækkeligt nøjagtige til at fastslå, at Jordens rotation ikke er konstant, blev denne definition uholdbar. Den blev i 19dd af XXXX erstattet af ovenstående definition, som altså bibiholdes i den nugældende konvention. Grunden til, at man har valgt netop nuklidet cæsium-133 er, at ...

Meter[redigér | rediger kildetekst]

Meteren er SI-enheden for længde og tildeles dimensionssymbolet L.

En meter er den længde, som lys i vakuum tilbagelægger i løbet af tidsrummet 1 / 299 792 458 sekunder.

Ved metersystemets indførelse i Frankrig i 17dd blev meteren defineret som en ti milliontedel af længden af den meridian fra ækvator til nordpolen, som går gennem Paris (det er grunden til, at Jordens omkreds er tæt på at være 40 000 km). I praksis blev der konstrueret en stang af platin-iridium med en X-formet profil indeholdende to ridser, hvis afstand definerede meteren ("ur-meteren"). I 19dd vedtog XXXX at indføre den nuværende definition. Ur-meteren er dermed blever et museumsstykke og afstanden mellem ridserne en størrelse, der må bestemmes eksperimentelt.

Kilogram[redigér | rediger kildetekst]

Kilogrammet er SI-enheden for masse og tildeles dimensionssymbolet M.

Et kilogram defineres ud fra en fastlagt værdi af Plancks konstant ved følgende fastsættelse:

Ved metersystemets indførelse i Frankrig i 17dd blev kilogrammet defineret som massen af en kubikdecimeter vand. I praksis blev der konstrueret en terning af platin-iridium, hvid masse blev defineret til 1 kg ("ur-kilogrammet"). Med den nuværende væsentlige ændring af definition afskaffes henvisningen til en bestemt fysisk prototype, og erstattes med en anvendelse af en eksakt defineret værdi af Plancks konstant . Dette er muligt, fordi enheden af er J·s eller s−1·m2·kg. Derfor kan kilogrammet defineres ud fra Planks konstant i kombination med definitionerne af sekund (s) og meter (m). Ur-kilogrammet er dermed blevet et museumsstykke, hvis masse må bestemmes eksperimentelt.

Ampere[redigér | rediger kildetekst]

Amperen er SI-enheden for strømstyrke og tildeles dimensionssymbolet I.

En ampere ...etc.

Die Festlegung des Ampere wird so geändert, dass sie messtechnisch leichter umzusetzen ist als die bisherige Definition. Die Neudefinition basiert auf der exakt festgelegten elementarladningen . Eine Konsequenz daraus ist, dass das Ampere nicht mehr auf der Festlegung des Kilogramms und des Meters basiert. Außerdem wird durch exakte Festlegung der Elementarladung die bisher exakt festgelegte magnetische Feldkonstante , die elektrische Feldkonstante und daraus abgeleitet auch der Wellenwiderstand des Vakuums nicht mehr exakt festgelegt (das bedeutet, diese bisher exakten Konstanten werden zu unsicherheitsbehafteten Messgrößen).

Kelvin[redigér | rediger kildetekst]

Kelvin er SI-enheden for termodynamisk temperatur og tildeles dimensionssymbolet Θ.

Definitionen på kelvin knytter sig til fastlæggelsen af værdien af Boltzmanns konstant .

Eine Konsequenz daraus ist, dass die Festlegung des Kelvins auf der Festlegung von Sekunde, Meter und Kilogramm basiert. Der Tripelpunkt von Wasser erhält dadurch (im Gegensatz zur bisher gültigen Festlegung als exaktem Wert) einen unsicherheitsbehafteten, gemessenen Wert.

Mol[redigér | rediger kildetekst]

Mol er SI-enheden for stofmængde og tildeles dimensionssymbolet N.

Definitionen på mol knytter sig til fastlæggelsen værdien af Avogadros konstant .

Moldefinitionen er dermed ikke længere afhængig af definitionen på kilogram.

Candela[redigér | rediger kildetekst]

Candela er SI-enheden for lysstyrke og tildeles dimensionssymbolet J.

Die Neudefinition entspricht bis auf Änderung der Formulierung der bisherigen Definition: "Det fotometriske strålingsækvivalent af en monokromatisk stråling med frekvensen 540 · 1012 Hz er 683 lumen per watt".

En candela er ... etc.

Afledte enheder[redigér | rediger kildetekst]

22 kohärenten abgeleiteten SI-Einheiten wurden eigene Namen und Einheitenzeichen (Symbole) zugeordnet, die selbst wieder mit allen Basis- und abgeleiteten Einheiten kombiniert werden können. So eignet sich zum Beispiel die SI-Einheit der Kraft, das Newton (= kg·m/s2), um die Einheit der Energie, das Joule als Newton mal Meter (N·m) auszudrücken. Die folgende Tabelle listet diese 22 Einheiten in derselben Reihenfolge wie Tabelle 3 der SI-Broschüre (8. Auflage).

Afledte SI-enheder med eget enhedssymbol
Fysisk størrelse Enhedsnavn Enheds-
symbol
Udtrykt ved
andre
SI-enheder
Udtrykt ved
grundlæggende
SI-enheder
Plan vinkel radian rad m/m 1
Rumvinkel steradian sr m2/m2 1
Frekvens hertz Hz s−1
Kraft newton N J/m m·kg·s−2
Tryk pascal Pa N/m2 m−1·kg·s−2
Energi, arbejde, varmemængde joule J N·m; W·s m2·kg·s−2
Effekt watt W J/s; V·A m2·kg·s−3
Elektrisk ladning coulomb C s·A
Elektrisk spænding, potentialforskel volt V W/A; J/C m2·kg·s−3·A−1
Elektrisk kapacitet farad F C/V m−2·kg−1·s4·A2
Elektrisk modstand ohm Ω V/A m2·kg·s−3·A−2
Elektrisk ledeevne siemens S 1/Ω m−2·kg−1·s3·A2
Magnetisk fluks weber Wb V·s m2·kg·s−2·A−1
Magnetisk flukstæthed, induktion tesla T Wb/m2 kg·s−2·A−1
Induktans henry H Wb/A m2·kg·s−2·A−2
Lysstrøm lumen lm cd·sr cd
Illuminans (belysningsstyrke) lux lx lm/m2 m−2·cd
Radioaktivitet becquerel Bq s−1
Absorberet dosis gray Gy J/kg m2·s−2
Ækvivalent dosis sievert Sv J/kg m2·s−2
Katalytisk aktivitet katal kat s−1·mol
Noter:
  • Alle enhedsnavne staves med lille begyndelsesbogstav; enhedssymboler, som er opkaldt efter en person, staves med stort begyndelsesbogstav.
  • I den sidste kolonne anvendes den officielle rækkefølge af enhederne (m, kg, s, A, K, mol, cd) ikke, i stedet benyttes rækkefølgen anvendt i SI-brochuren[6].
  • Enhederne radian (rad) og steradian (sr) er, som det fremgår, dimensionsløse. Alligevel kan man medtage dem efter en talværdi for at præcisere dennes betydning, for eksempel "Vinklen u = 1,23 rad = 70,5°". Før 1995 blev rad og sr betegnet som "supplerende enheder", men dette år vedtog den 20. CGPM at medtage dem i gruppen af afledte enheder.


Afledte SI-enheder uden eget enhedssymbol
Fysisk størrelse Fysisk symbol Enhedsnavn Udtrykt ved
grundlæggende
SI-enheder
Areal A Kvadratmeter m2
Volumen V Kubikmeter m3
Densitet Kilogram pr. kubikmeter kg·m3
Fart v Meter per sekund m·s−1
Acceleration a Meter per sekund i anden m·s−2
Bevægelsesmængde p Kilogram gange meter per sekund kg·m·s−1
Noter:
  • I den sidste kolonne anvendes den officielle rækkefølge af enhederne (m, kg, s, A, K, mol, cd) ikke, i stedet benyttes rækkefølgen givet ved størrelsens definition.


Enheder, der må anvendes sammen med SI-enheder
Type Fysisk størrelse Symbol Definition
Vinkel Grad ° /180 rad = 60′ = 3600″
Vinkel Bueminut 1′ 1°/60 = 60″
Vinkel Buesekund 1″ 1′/60 = 1°/3600
Længde Astronomisk enhed au 1 au 149 597 870 700 m
Længde Parsec pc 1 pc = 206 265 au = 3,085 68·1016 m
Volumen Liter l, L, ℓ 1 L 1 dm3 = 10–3 m3
Masse Atommasseenhed u 1 u = 1,660 538 86·10–27 kg
Masse Ton t 1 t 103 kg
Tid Minut min 1 min 60 s
Tid Time h 1 h 60 min = 3600 s
Tid Døgn d 1 d 24 h = 1440 min = 86 400 s
Tryk Bar bar 1 bar 105 Pa = 1000 hPa
Energi Elektronvolt eV 1 eV {e} J = 1.602 176 634·10–19 J
Energi Watttime Wh 1 Wh 3,6 kJ. 1 kWh = 3,6 MJ
Temperatur Grad celsius °C
: celsiustemperatur, : kelvintemperatur
Aktivitet Curie Ci 1 Ci 3,7·1010 Bq
Dosis Rad rad 1 rad 10–2 Gy
Dosisækvivalent Rem rem 1 rem 10–2 Sv
Eksposition Röntgen R 1 R = 2.58·10–4 C/kg
Noter:
  • Ved vinkelangivelser i grader, bueminutter og buesekunder sættes der traditionelt (og i modsætning til alle øvrige enheder) ikke mellemrum mellem talværdi og enhed. For elsempel skrives 12° 34′ 56″.
  • Symbolet 'au' for den astronomiske enhed anbefales af den Internationale Astronomiske Union[7], førende fagtidsskrifter.[8][9] samt af BIPM[10].
  • Enhedssymbolet for liter er et lille l, men da det kan minde meget om tallet 1, kan man også benytte et stort L eller et håndskrevet ℓ.
  • Celsius-temperaturen beregnes ud fra den termodynamiske kelvin-temperatur med formlen . De to temperaturer benytter derfor den samme skala, men har forskellige nulpunkter. Tallet 273,15 stammer fra den tidligere definition, ifølge hvilken temperaturen af vands tripelpunkt blev fastsat til 273,16 K, hvilket ifølge målinger ligger ca. 0,01 K unden tripelpunktet. Ved angivelse af meget lave temperaturer anbefales kelvin. Enheden °C må ikke kombineres med SI-præfikser.

Dekadiske præfikser[redigér | rediger kildetekst]

Hovedartikel: Metric prefix.

Prefixes are added to unit names to produce multiples and sub-multiples of the original unit. All of these are integer powers of ten, and above a hundred or below a hundredth all are integer powers of a thousand. For example, kilo- denotes a multiple of a thousand and milli- denotes a multiple of a thousandth, so there are one thousand millimetres to the metre and one thousand metres to the kilometre. The prefixes are never combined, so for example a millionth of a metre is a micrometre, not a millimillimetre. Multiples of the kilogram are named as if the gram were the base unit, so a millionth of a kilogram is a milligram, not a microkilogram.[11]:122 [12]:14 When prefixes are used to form multiples and submultiples of SI base and derived units, the resulting units are no longer coherent.[11]:7

The BIPM specifies twenty prefixes for the International System of Units (SI):

SI præfikser
Præfiks Grundtal Decimalværdi Dansk navn Indført
Navn Symbol 1000 10
yotta Y 10008 1024 1 000 000 000 000 000 000 000 000 kvadillion 1991
zetta Z 10007 1021 1 000 000 000 000 000 000 000 trilliard 1991
exa E 10006 1018 1 000 000 000 000 000 000 trillion 1975
peta P 10005 1015 1 000 000 000 000 000 billiard 1975
tera T 10004 1012 1 000 000 000 000 billion 1960
giga G 10003 109 1 000 000 000 milliard 1960
mega M 10002 106 1 000 000 million 1873
kilo k 1 0001 103 1000 tusind 1795
hekto h 10002/3 102 100 hundred 1795
deka da 10001/3 101 10 ti 1795
10000 100 1 en
deci d 1000–1/3 10–1 0.1 tiendedel 1795
centi c 1000–2/3 10–2 0.01 hundrededel 1795
milli m 1000–1 10–3 0.001 tusindedel 1795
mikro μ 1000–2 10–6 0.000 001 billiardedel 1873
nano n 1000–3 10–9 0.000 000 001 milliardedel 1960
pico p 1000–4 10–12 0.000 000 000 001 billiontedel 1960
femto f 1000–5 10–15 0.000 000 000 000 001 billiardedel 1964
atto a 1000–6 10–18 0.000 000 000 000 000 001 trilliontedel 1964
zepto z 1000–7 10–21 0.000 000 000 000 000 000 001 sekstilliontedel 1991
yocto y 1000–8 10–24 0.000 000 000 000 000 000 000 001 kvadrilliontedel 1991

Skabelon:AstroOgier/SI-præfikser

Historisk udvikling[redigér | rediger kildetekst]

Metersystemet[redigér | rediger kildetekst]

Træsnit dateret 1800, som illustrerer anvendelse af de seks nye decimale enheder, som ved lov af 4. november 1800 blev obligatoriske i Frankrig. Øverst vises (1) liter (rummål), (2) gram (enhed for masse) og (3) meter (enhed for længde), nederst (4) ar (arealmål på 100 m2), (5) franc (møntenhed) og (6) stère (rumfangsenhed, 1 m3 brænde). De nye enheder navngives nederst med indtil da benyttede enheder i parentes.
Illustration af den gamle franske enhed for rumfang, stère, indført i 1793 og defineret som 1 m3 (1 kubikmeter), her i form af brænde. Enheden er efter den 31. december 1977 ikke længere i brug i Frankring. En hjemlig pendant er rummeter.

Meterkonventionen, 1875[redigér | rediger kildetekst]

CGPM vocabulary
French English Pages[11]
étalons [Technical] standard 5, 95
prototype prototype [kilogram/metre] 5,95
noms spéciaux [Some derived units have]
special names
16,106
mise en pratique mise en pratique
[Practical realisation][Note 1]
82, 171
Hovedartikel: Metre Convention.

A French-inspired initiative for international cooperation in metrology led to the signing in 1875 of the Metre Convention, also called Treaty of the Metre, by 17 nations.[Note 2][13]:353–354 Initially the convention only covered standards for the metre and the kilogram. In 1921, the Metre Convention was extended to include all physical units, including the ampere and others thereby enabling the CGPM to address inconsistencies in the way that the metric system had been used.[14][11]:96

A set of 30 prototypes of the metre and 40 prototypes of the kilogram,[Note 3] in each case made of a 90% platinum-10% iridium alloy, were manufactured by British metallurgy specialty firm and accepted by the CGPM in 1889. One of each was selected at random to become the International prototype metre and International prototype kilogram that replaced the mètre des Archives and kilogramme des Archives respectively. Each member state was entitled to one of each of the remaining prototypes to serve as the national prototype for that country.[15]

The treaty also established a number of international organisations to oversee the keeping of international standards of measurement:[16] [17]

CGS-systemet[redigér | rediger kildetekst]

Closeup of the National Prototype Metre, serial number 27, allocated to the United States

Skabelon:Missing info Skabelon:Missing info In the 1860s, James Clerk Maxwell, William Thomson (later Lord Kelvin) and others working under the auspices of the British Association for the Advancement of Science, built on Gauss' work and formalised the concept of a coherent system of units with base units and derived units christened the centimetre–gram–second system of units in 1874. The principle of coherence was successfully used to define a number of units of measure based on the CGS, including the erg for energy, the dyne for force, the barye for pressure, the poise for dynamic viscosity and the stokes for kinematic viscosity.[18]

In 1879, the CIPM published recommendations for writing the symbols for length, area, volume and mass, but it was outside its domain to publish recommendations for other quantities. Beginning in about 1900, physicists who had been using the symbol "μ" (mu) for "micrometre" or "micron", "λ" (lambda) for "microlitre", and "γ" (gamma) for "microgram" started to use the symbols "μm", "μL" and "μg".[19]

At the close of the 19th century three different systems of units of measure existed for electrical measurements: a CGS-based system for electrostatic units, also known as the Gaussian or ESU system, a CGS-based system for electromechanical units (EMU) and an International system based on units defined by the Metre Convention.[20] for electrical distribution systems. Attempts to resolve the electrical units in terms of length, mass, and time using dimensional analysis was beset with difficulties—the dimensions depended on whether one used the ESU or EMU systems.[21] This anomaly was resolved in 1901 when Giovanni Giorgi published a paper in which he advocated using a fourth base unit alongside the existing three base units. The fourth unit could be chosen to be electric current, voltage, or electrical resistance.[22] Electric current with named unit 'ampere' was chosen as the base unit, and the other electrical quantities derived from it according to the laws of physics. This became the foundation of the MKS system of units.

In the late 19th and early 20th centuries, a number of non-coherent units of measure based on the gram/kilogram, centimetre/metre and second, such as the Pferdestärke (metric horsepower) for power,[23][Note 4] the darcy for permeability[24] and "millimetres of mercury" for barometric and blood pressure were developed or propagated, some of which incorporated standard gravity in their definitions.[Note 5]

At the end of the Second World War, a number of different systems of measurement were in use throughout the world. Some of these systems were metric system variations; others were based on customary systems of measure, like the U.S customary system and Imperial system of the UK and British Empire.

MKS-systemet[redigér | rediger kildetekst]

SI-systemet[redigér | rediger kildetekst]

Tilslutning til SI-systemet[redigér | rediger kildetekst]

Farvekodet verdenskort, som viser, hvornår de forskellige lande tiltrådte metersystemet. Rød: 1795, grøn: 1998.
Årstal Land(e)
1795 Frankrig
1816 Nederlandene, Belgien Luxemborg
1840 Senegal, Algeriet
1849 Spanien
1852 Portugal
1853 Columbia, Monaco
1857 Mexico, Venezuela
1858 Cuba
1861 Italien
1862 Peru, Uruguay, Brasilien
1864 Rumænieb
1865 Equador, Chile
1867 Dominikanske Republik
1868 Tyskland, Bolivia
1869 Tyrkiet
1871 Surinam, Østrig, Tjekkiet, Slovakiet, Kroatien, Lichtenstein, Slovenien, me
1873 rs
1874 Ungarn, Sverige
1875 Schweiz
1876 Mauritius
1877 Argentina
1878 Bosnien-Hercegovina, sc
1881 Costa Rica
1882 Norge
1884 Congo, Elfenbenskysten, Benin, Mauretanien, Niger, Chad
1885 Sverige
1886 Finland
1888 bg, mk
1891 st
1893 tn, ni
1895 hn
1898 dj
1899 py, pr
1900 gq, is
1901 gn
1905 mz, ao , gw, cv
1906 ph
1907 Danmark, sm
1910 gt, mt, bz, bi, rw, cd
1911 vn
1912 th
1913 cn
1914 km
1915 pa
1916 mn
1918 ru
1919 pl
1920 ht
1922 kh, ma, eh, kz, kg, tj, tm, uz, am, az, by, ee, ge, lv, lt, md, ua
1923 ly, id, af
1924 tg
1927 ir
1930 iq
1934 sy, ad, lb
1947 il
1948 kp, al
1949 kr
1951 eg, bt, jp
1952 jo, tw
1954 sd, ss, in
1957 gr, mo, tl, mg
1959 Maldiverne
1960 so, ga, bf, ml, cf
1961 kw, cm, ae
1962 et, er, ng
1963 np, la
1964 sa
1965 gb
1967 na, ie, za, ke, ug, tz, pk
1968 sg
1969 au, nz, bs, zw, bw, sz, bh, gd, dm, vc, kn
1970 ca, lk, tt, zm, ls, pg, sb, bm
1971 gy, my
1972 gh, cy, fj, qa
1973 bb, jm, nr
1974 om, ag
1975 to
1976 sl, mw, gm
1978 tv
1981 ye
1982 bd
1984 ki
1985 bn
1988 vu
2000 lc
  1. ^ a b "The World Factbook Appendix G". CIA. Hentet 2017-10-26.
  2. ^ Materese, Robin (2018-11-16). "Historic Vote Ties Kilogram and Other Units to Natural Constants". NIST (engelsk). Hentet 2018-11-16.
  3. ^ Maßeinheiten sind bald in Natur gemeißelt. Abgerufen am 16. November 2018.
  4. ^ General Conference on Weights and Measures (CGPM) – 26th meeting - Adopted Resolutions, abgerufen am 19. November 2018
  5. ^ Naturkonstanten als Hauptdarsteller. Abgerufen am 16. November 2018.
  6. ^ The International System of Units (SI), Bureau International des Poids et Mesures, 8th editon, 2006, https://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf, tabel 3.
  7. ^ International Astronomical Union, red. (31. august 2012), "RESOLUTION B2 on the re-definition of the astronomical unit of length" (PDF), RESOLUTION B2, Beijing, China: International Astronomical Union, The XXVIII General Assembly of International Astronomical Union … recommends … 5. that the unique symbol "au" be used for the astronomical unit.
  8. ^ "Manuscript Preparation: AJ & ApJ Author Instructions". American Astronomical Society. Hentet 29. oktober 2016. Use standard abbreviations for SI... and natural units (e.g., au, pc, cm).
  9. ^ "Monthly Notices of the Royal Astronomical Society: Instructions for Authors". Oxford Journals. Hentet 20. marts 2015. "The units of length/distance are Å, nm, µm, mm, cm, m, km, au, light-year, pc.
  10. ^ "SI Brochure: The International System of Units (SI) [8th edition, 2006; updated in 2014]". BIPM. 2014. Hentet 3. januar 2015.
  11. ^ a b c d Fodnotefejl: Ugyldigt <ref>-tag; ingen tekst er angivet for referencer med navnet SIBrochure
  12. ^ Thompson, Ambler; Taylor, Barry N. (2008). Guide for the Use of the International System of Units (SI) (Special publication 811) (PDF). Gaithersburg, MD: National Institute of Standards and Technology.
  13. ^ Fodnotefejl: Ugyldigt <ref>-tag; ingen tekst er angivet for referencer med navnet Alder
  14. ^ Tunbridge, Paul (1992). Lord Kelvin, His Influence on Electrical Measurements and Units. Peter Pereginus Ltd. s. 42-46. ISBN 978-0-86341-237-0.
  15. ^ Nelson, Robert A. (1981). "Foundations of the international system of units (SI)" (PDF). Physics Teacher: 597.Skabelon:Inconsistent citations
  16. ^ "The Metre Convention". Bureau International des Poids et Mesures. Hentet 2012-10-01.
  17. ^
  18. ^ Page, Chester H.; Vigoureux, Paul, red. (1975-05-20). The International Bureau of Weights and Measures 1875–1975: NBS Special Publication 420. Washington, D.C.: National Bureau of Standards. s. 12.
  19. ^ McGreevy, Thomas (1997). Cunningham, Peter (red.). The Basis of Measurement: Volume 2 – Metrication and Current Practice. Pitcon Publishing (Chippenham) Ltd. s. 222-224. ISBN 978-0-948251-84-9.
  20. ^ Fenna, Donald (2002). Weights, Measures and Units. Oxford University Press. International unit. ISBN 978-0-19-860522-5.
  21. ^ Maxwell, J. C. (1873). A treatise on electricity and magnetism. Vol. 2. Oxford: Clarendon Press. s. 242-245. Hentet 2011-05-12.
  22. ^ "Historical figures: Giovanni Giorgi". International Electrotechnical Commission. 2011. Hentet 2011-04-05.
  23. ^ "Die gesetzlichen Einheiten in Deutschland" [List of units of measure in Germany] (PDF) (German). Physikalisch-Technische Bundesanstalt (PTB). s. 6. Hentet 2012-11-13.{{cite web}}: CS1-vedligeholdelse: Ukendt sprog (link)
  24. ^ "Porous materials: Permeability" (PDF). Module Descriptor, Material Science, Materials 3. Materials Science and Engineering, Division of Engineering, The University of Edinburgh. 2001. s. 3. Arkiveret fra originalen (PDF) 2 juni 2013. Hentet 13 november 2012. {{cite web}}: Ugyldig |deadurl=yes (hjælp); Ukendt parameter |deadurl= ignoreret (|url-status= foreslået) (hjælp)

Henvisninger[redigér | rediger kildetekst]


Fodnotefejl: <ref>-tags eksisterer for en gruppe betegnet "Note", men der blev ikke fundet et tilsvarende {{reflist|group="Note"}}, eller et afsluttende </ref>-tag mangler