Chua kredsløb

Fra Wikipedia, den frie encyklopædi
Gå til: navigation, søg
En version af Chua's kredsløb uden Chua's diode.

Chua's kredsløb eller Chua kredsløb er et simpelt elektronisk kredsløb som udviser klassisk kaosteoretisk opførsel. Chua kredsløb blev introduceret i 1983 af Leon O. Chua, som var en besøgende ved Waseda University i Japan på det tidspunkt. [1] Kredsløbets lette konstruktion har gjort det til et allestedsnærværende praktisk eksempel på et kaotisk system, hvilket har ledt nogle til at erklære det for "et paradigme for kaos." [2]

Kaosbetingelser[redigér | redigér wikikode]

Et autonomt kredsløb lavet at standard komponenter (modstande, kondensatorer, spoler) skal opfylde tre betingelser for at det kan udvise kaotisk opførsel. Det skal indeholde:

  1. én eller flere ikke-lineare elementer
  2. én eller flere lokalt aktive modstande
  3. tre eller flere elektriske energilagringselementer.

Chua's kredsløb er det simpleste elektroniske kredsløb som opfylder disse betingelser. Som vist i illustrationen, er energilagringselementerne to kondensatorer (mærket C1 og C2) og en spole (mærket L1). Der er en aktiv modstand (mærket R). Der er en ikke-linear modstand lavet af to lineare modstande og to dioder. Yderst til højre er en negativ impedans konverter lavet fra tre lineare modstande og en operationsforstærker.

Model[redigér | redigér wikikode]

Ved hjælp af anvendelse af elektromagnetisme-lovene, kan dynamikken af Chua's kredsløb blive præcist modelleret ved hjælp af system af tre ikke-lineare koblede ordinære differentialligninger med variablene x(t), y(t) og z(t), som respektiv giver spændingerne over kondensatorerne C1 og C2 – og strømmen i spolen L1. Disse ligninger er:

\frac{dx}{dt}=\alpha [y-x-f(x)]
\frac{dy}{dt}=x-y+z
\frac{dz}{dt}=-\beta y

Funktionen f(x) beskriver den elektriske response af den ikke-lineare modstand – og funktionens form afhænger af den specifikke komponentsammensætning. Parametrene α og β bestemmes af de specifikke kredsløbskomponentværdier.

En kaotisk attraktor, kendt som "The Double Scroll" pga. dens form i (x,y,z) rummet, blev først observeret i et kredsløb indeholdende et ikke-lineart element så at f(x) var et 3-segment stykkevis-linear funktion. [3]

Den lette eksperimentielle implementation af kredsløbet, kombineret med eksistensen af en simpel og præcis teoretisk model, gør Chua's kredsløb til et brugbart system til at undersøge mange fundamentale og praktiske kaosteori problemstillinger. På grund af dette, har kredsløbet været centrum for meget forskning, og er bredt refereret i litteraturen.

Herudover kan Chua's kredsløb let realiseres med en flerlags CNN (Cellular Nonlinear Networks). CNN blev opfundet af Leon Chua i 1988. Til dato er en stor mængde af forskellige typer af kaotiske attraktorer opdaget i Chua's system, som kan findes numerisk, med relativ lethed, ved standard beregningsprocedurer. [4] For nylig blev en skjult Chua's attraktor opdaget. [5]

Kilder/referencer[redigér | redigér wikikode]

  1. Matsumoto, Takashi (December 1984). "A Chaotic Attractor from Chua's Circuit". IEEE Transactions on Circuits and Systems (IEEE) CAS-31 (12): 1055–1058. http://www.eecs.berkeley.edu/~chua/papers/Matsumoto84.pdf. Hentet 2008-05-01. 
  2. Madan, Rabinder N. (1993). Chua's circuit: a paradigm for chaos. River Edge, N.J.: World Scientific Publishing Company. ISBN 9810213662. 
  3. Chua, Leon O.; Matsumoto, T., and Komuro, M. (August 1985). "The Double Scroll". IEEE Transactions on Circuits and Systems (IEEE) CAS-32 (8): 798–818. http://ieeexplore.ieee.org/iel5/31/23571/01085791.pdf. Hentet 2008-05-01. 
  4. Bilotta, E., Pantano, P. (2008). Gallery of Chua Attractors. World Scientific. ISBN 978-981-279-062-0. 
  5. Leonov G.A., Vagaitsev V.I., Kuznetsov N.V. (2011). "Localization of hidden Chua's attractors". Physics Letters, Section A 375 (23): 2230–2233. doi:10.1016/j.physleta.2011.04.037. 

Bøger[redigér | redigér wikikode]

  • Chaos synchronization in Chua's circuit, Leon O Chua, Berkeley : Electronics Research Laboratory, College of Engineering, University of California, [1992], OCLC: 44107698
  • Chua’s Circuit Implementations: Yesterday, Today and Tomorrow,L. Fortuna, M. Frasca, M.G. Xibilia, World Scientific Series on Nonlinear Science, Series A – Vol. 65, 2009, ISBN 978-981-283-924-4

Se også[redigér | redigér wikikode]

Eksterne henvisninger[redigér | redigér wikikode]

Commons-logo.svg
Wikimedia Commons har medier relateret til: