Matrix: Forskelle mellem versioner

Fra Wikipedia, den frie encyklopædi
Content deleted Content added
Fjerner version 6772605 af 213.64.247.47 (diskussion)
→‎Matrixmultiplikation: Nyt miniafsnit om transponering inkl. henvisning til uddybende artikel.
Linje 120: Linje 120:
* ''AI'' = ''IA'' = ''A'' for alle ''A'' ∈ Mat<sub>''n''</sub>(''R'').
* ''AI'' = ''IA'' = ''A'' for alle ''A'' ∈ Mat<sub>''n''</sub>(''R'').
Parret (Mat<sub>''n''</sub>(''R''), ⋅ ) udgør derfor et [[monoid]].
Parret (Mat<sub>''n''</sub>(''R''), ⋅ ) udgør derfor et [[monoid]].

=== Transponering ===
{{Uddybende|Transponering (matematik)}}
En transponering er en operation, der foretages på en matrix. Når en matrix transponeres ændres tallene placeringen, således at deres rækkenummer bliver kolonnenummeret, og kolonnenummeret bliver rækkenummeret. Hvis man har en matrix givet ved
:<math>A =
\begin{pmatrix}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \ldots & a_{mn}
\end{pmatrix}.
</math>

Kommer den transponerede matrix til at være givet ved
:<math>A^T =
\begin{pmatrix}
a_{11} & a_{12} & \ldots & a_{1m} \\
a_{21} & a_{22} & \ldots & a_{2m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \ldots & a_{nm}
\end{pmatrix}.
</math>

Hvis antallet af rækker er forskelligt fra antallet af kolonner, vil operationen ændre matricens dimensioner. Dette kan vises med nedenstående eksempel:
:<math>
\begin{pmatrix}
1 & 2 \\
3 & 4 \\
5 & 6 \\
7 & 8
\end{pmatrix}^T
=
\begin{pmatrix}
1 & 3 & 5 & 7 \\
2 & 4 & 6 & 8
\end{pmatrix}
</math>


=== Matricer og vektorer ===
=== Matricer og vektorer ===

Versionen fra 2. feb. 2013, 09:07

For alternative betydninger, se Matrix (flertydig). (Se også artikler, som begynder med Matrix)

En matrix er i matematikken en meget nyttig måde at stille en række "tal" op i en tabel. Dette kan være tal i en vilkårlig ring R, men det er typisk reelle tal (evt. komplekse). Hvor vektorer v i Rn kan opfattes som en liste v = (v1, v2, ..., vn) af tal i R, er en matrix blot en rektangulær tabel af tal. Det kunne fx være matricen

Hvor vektorer har en dimension, svarende til længden af listen af tal, har matricer således et antal rækker og et antal søjler. Man snakker om en m×n-matrix, hvor m er antallet af rækker, og n er antallet af søjler. Vores matrix H fra før er således et eksempel på en 2×3-matrix. Man siger "m-gange-n-matrix" eller "m-kryds-n-matrix".

Ligesom man kan "lægge vektorer sammen" og "gange vektorer med tal", er der også på matricer defineret matrixaddition og skalarmultiplikation. På matricer har man dog også defineret en måde at "gange" to matricer sammen, kaldet matrixmultiplikation. Alle disse begreber er beskrevet nedenfor.

Ordet matrix bøjes: en matrix, matricen, flere matricer, alle matricerne. Det bør ikke forveksles med ordet matrice, der bøjes på samme måde i flertal: en matrice, matricen, flere matricer, alle matricerne.

Notation

Som ovenfor betegnes matricer typisk med store bogstaver, evt. med to streger under. Et enkelt tal i en matrix A kaldes en indgang i A. Mængden af alle m×n-matricer, hvor alle indgange ligger i en ring R, betegnes Matm,n(R). Vores matrix H fra før ligger således i Mat2,3(R), hvor R her skal betyde de reelle tal. (H kan dog også opfattes som liggende i Mat2,3(Z) eller Mat2,3(C) for den sags skyld.) Skrivemåden Matn(R) er en forkortelse for Matn,n(R).

For en vektor vRn er det typisk underforstået, at v1, v2, ..., vn betegner indgangene i/koordinaterne for v. På samme måde er det typisk underforstået for en matrix A, at aij betegner indgangen i den i'te række og j'te søjle. Således er h21 = 4 og h13 = 2, hvis H er vores matrix fra før. Man kalder generelt aij for den ij'te indgang i A. Ofte ser man også skrivemåden Aij for den ij'te indgang i A. En helt generel matrix A ∈ Matm,n(R) kan således skrives op som

Dette skrives kort A = (aij), A ∈ Matm,n(R). Denne notation udnyttes ofte på det groveste til at angive matricer. Man kan fx først skrive, hvad alle bij skal være, og derefter skrive "..og lad så B være matricen (bij)". En lignende måde er at definere en funktion f: I×JR, hvor I = {1, 2, ..., m} og J = {1, 2, ..., n}, og så skrive "..og lad nu B være matricen (f(i,j))". Her skal B altså forstås som matricen, hvis ij'te indgang har værdien f(i,j).

Matrixalgebra

Matrixaddition

Ligesom vektorer i Rn lægges matricer også sammen koordinatvis. Dvs., at hvis

og H stadig er vores matrix fra før, så er

Bruger man den korte notation fra før, kan dette altså generelt skrives A + B = (aij + bij). Det giver dog kun mening, hvis A og B har samme dimension, og aij + bij er defineret. Altså er A + B kun defineret for A og B i samme mængde Matm,n(R). Det svarer helt til, at det ikke umiddelbart giver mening, at lægge vektoren (3, 5) til (4, 5, 7).

Ligesom for vektorer gælder det også for matricer, at addition er associativt og kommutativt. Altså

  • (A + B) + C = A + (B + C) for alle A, B, C ∈ Matm,n(R),
  • A + B = B + A for alle A, B ∈ Matm,n(R).

Mht. matrixaddition findes der også et neutralt element, nemlig nul-matricen, som er den matrix, der har 0 på alle indgange. Lad os kalden den N. Nu gælder altså

  • A + N = N + A = A for alle A ∈ Matm,n(R).

Her skal N selvfølgelig have dimension m×n for udtrykket giver mening. Nulmatricen N er altså selv et element i Matm,n(R). Altså udgør (Matm,n(R), +) en abelsk gruppe.

Skalarmultiplikation

Ligesom addition fungerer skalarmultiplikation også på stort set samme måde for matricer, som vektorer i Rn. Alle indgangene i en matrix ganges simplethen med den givne skalar. Altså for A ∈ Matm,n(R) og rR er rA = (raij). For vores gode gamle H er fx

Ligesom for vektorer gælder disse tre regler også for matricer:

  • (rs)A = r(sA) for alle r, sR og A ∈ Matm,n(R).
  • r(A + B) = rA + rB for alle rR og A, B ∈ Matm,n(R).
  • (r + s)A = rA + sA for alle r, sR og A ∈ Matm,n(R).

Matrixmultiplikation

Matrixmultiplikation er derimod en smule mere kompliceret. For A ∈ Matm,n(R) og B ∈ Matn,l(R) vil produktet AB ∈ Matm,l(R), og det er defineret ved

.

Dette vil formentlig forvirre selv de skarpeste læsere (der ikke allerede kender til matrixmultiplikation), så her kommer straks et eksempel. Lad nu

Så er

Produktet af en m×n-matrix A og en p×q-matrix B er altså kun defineret, hvis n = p. Hvis det er tilfældet, bliver matricen AB således en m×q-matrix.

Et vigtigt specialtilfælde er tilfældet, hvor A er en 1×n-matrix, og B er en n×1-matrix. Her bliver produktet AB en 1×1-matrix, eller med andre ord en skalar. Hvis man nu tænker på A som "en vektor, der ligger ned", og på B som "en vektor, der står op", så svarer AB netop til prikproduktet af de to vektorer. Fx

En 1×n-matrix kaldes også en rækkevektor, og en n×1-matrix kaldes en søjlevektor. Dette giver os en lidt lettere måde at tænke på det generelle matrixprodukt. Forestiller man sig en m×n-matrix A, som m rækkevektorer "lagt oven på hinanden", og en n×l-matrix B som l søjlevektorer "stillet side om side", så er

En vigtig egenskab ved matrixmultiplikation er, at selvom A, B ∈ Matn(R) er kvadratiske matricer, så er AB ikke nødvendigvis det samme som BA. Altså er matrixmultiplikation ikke kommutativt. Når man regner med matricer, bliver man derfor nødt til at være meget striks med, på hvilken side man ganger en matrix på. Kommer man til at bytte om, kan det for det første ske, at det slet ikke er defineret, og for det andet kan det give et helt andet resultat.

Følgende regneregler kan vises for matrixmultiplikation:

  • r(AB) = A(rB) for alle rR, A ∈ Matm,n(R) og B ∈ Matn,l(R).
  • (AB)C = A(BC) for alle A ∈ Matk,l(R), B ∈ Matl,m(R) og C ∈ Matm,n(R) (associativitet).
  • A(B + C) = AB + AC for alle A ∈ Matm,n(R) og B, C ∈ Matn,l(R).
  • (A + B)C = AC + BC for alle A, B ∈ Matm,n(R) og C ∈ Matn,l(R).

For de to sidste regler siger man, at matrixmultiplikation distribuerer over addition.

Hvis R indeholder et et-element 1 (det der svarer til 1 i både de hele, rationelle, reelle og komplekse tal), altså hvis R er en enhedsring, så kaldes matricen In ∈ Matn(R),

den n-dimensionelle identitetsmatrix. Ofte udelades det lille n, da det typisk giver sig selv hvilken dimension I skal have, før et udtryk giver mening. Identitetsmatricen er det neutrale element mht. matrixmultiplikation af kvadratiske matricer. Altså

  • AI = IA = A for alle A ∈ Matn(R).

Parret (Matn(R), ⋅ ) udgør derfor et monoid.

Transponering

Uddybende Uddybende artikel: Transponering (matematik)

En transponering er en operation, der foretages på en matrix. Når en matrix transponeres ændres tallene placeringen, således at deres rækkenummer bliver kolonnenummeret, og kolonnenummeret bliver rækkenummeret. Hvis man har en matrix givet ved

Kommer den transponerede matrix til at være givet ved

Hvis antallet af rækker er forskelligt fra antallet af kolonner, vil operationen ændre matricens dimensioner. Dette kan vises med nedenstående eksempel:

Matricer og vektorer

Når man regner med matricer, opfatter man typisk vektorer som n×1-matricer; altså søjlevektorer med andre ord. Hvis A ∈ Matm,n(R) og vRn, er produktet Av altså blot et specialtilfælde af matrixmultiplikation.

Vil man gange en vektoren vRm på venstre side af A ∈ Matm,n(R), bliver man derfor nødt til først at "lægge v ned". Dette skrives vT eller v* (se hvorfor under transponering), og også her er produktet vTA blot et specialtilfælde af matrixmultiplikation.

Om matricer

Matricer som et vektorrum

Hvis F er et legeme (fx de reelle tal), udgør mængden Matm,n(F) et vektorrum over F, mht. til matrixaddition og skalarmultiplikation som defineret i afsnittene ovenover. Sammenholder man regnereglerne i disse afsnit med kravene til et vektorrum, vil man hurtigt se dette.

Her er anden måde at overbevise sig selv om dette. Forestil dig, at man i stedet for at skrive indgangene i en matrix A op i en rektangulær tabel, blot skriver indgange i en lang liste. Altså A ∈ Matm,n(F) skrives som

A = (a11, a12, ..., a1n, a21, a22, ..., amn).

Nu ser man, at Matm,n(F) i virkeligheden blot er Fmn i forklædning. Addition og skalarmultiplikation er jo defineret på præcis samme måde.

Dette kan generaliseres til tilfældet Matm,n(R), hvor R er en ring. Her bliver det dog i stedet til et R-modul.

Vektorrummet Matn(F) over legemet F udgør sammen med matrixmultiplikation et typisk eksempel på en (endelig dimensional) legemsalgebra. Det er altså et vektorrum, hvor der samtidig er defineret en måde at "gange" vektorer sammen.

Matricer som lineære afbildninger

Lad i dette afsnit F være et legeme (fx de reelle tal), og lad A være en matrix i Matm,n(F). Nu ligger Av i vektorrumet Fn for alle vektorer v i vektorrummet Fm. Altså kan man definere en funktion f: FmFn ved

f(v) = Av.

Dette bliver en lineær funktion, da

f(av + bw) = A(av + bw) = A(av) + A(bw) = aAv + bAw = af(v) + bf(w),

for alle a, bF og v, wFm. Alle matricer A ∈ Matm,n(F) beskriver således en lineær afbildning mellem Fm og Fn. Denne afbildning skriver man typisk TA, da man traditionelt kalder det en lineær transformation. Omvendt kan det også vises, at alle lineære funktioner (transformationer) mellem Fm og Fn kan skrives som TA for et A ∈ Matm,n(F). Mængden af matricer Matm,n(F) udgør altså i en hvis forstand alle lineære afbildninger mellem Fm og Fn.

Dette er ekstra smart, da det også kan vises, at alle endeligt dimensionale vektorrum over et legeme F er isomorf til Fn hvor n er dimensionen af vektorrummet. Det vil altså sige, at hvis f er en vilkårlig lineær afbildning, mellem to vektorrum V og W af henholdsvis dimension m og n, så findes der en matrix A ∈ Matm,n(F), så det at bruge f på en vektor i V svarer til at gange med matricen A i det tilsvarende vektorrum Fm.

Her er et eksempel på dette. Lad P(n) betegne alle polynomier af grad n eller mindre, med reelle koefficienter. Dette udgør et reelt vektorrum af dimension n + 1. Altså er det isomorf til vektorrumet Rn+1. En isomorfi er den, hvor polynomiet

a0 + a1x + ... + anxn ∈ P(n)

svarer til vektoren (a0, a1, ..., an) ∈ Rn+1. Lad nu D: P(n) → P(n – 1) betegne funktionen

D(p) = p',

hvor p' her skal betyde den afledte af polynomiet p i P(n). Dette er en lineær funktion, da der generelt gælder, at (af + bg)' = af + bg for vilkårlige funktioner f og g. Altså findes nu en matrix A ∈ Matn+1,n(R), der "differentierer polynomier". Det skal forstås på den måde, at et polynomium i P(n) først skal laves om til en vektor i Rn+1, derefter ganger man med A, og når man så laver den fremkomne vektor tilbage til et polynomium, så er det minsandten det afledte polynomium.

Matricer som en ring

Hvis R er en ring bliver Matn(R) igen til en ring, mht. matrixaddition og -multiplikation. Hvis R tilmed er en enhedsring, bliver Matn(R) også til en enhedsring, hvor et-elementet er identitetsmatricen af dimension n.

Anvendelser

Løsning af lineære ligninger

I lineær algebra indgår brug af matricer til at løse flere lineære ligninger med flere ubekendte. Generelt kan man skrive m lineære ligninger med n ubekendte som:

Her er aij og bi alle tal i et legeme F (fx de reelle tal), og x1, ..., xn er de ubekendte.

To vektorer i Fn er ens, hvis og kun hvis alle deres koordinater er ens. Altså kan det samme ligningssystem skrives på vektorform som

Venstresiden af denne ligning ligner meget et matrixprodukt, og det er det faktisk, for forige ligning kan nemlig skrives som:

Ethvert lineært ligningssystem med m ligninger og n ubekendte kan altså skrives på matrixform, som Ax = b, hvor A ∈ Matm,n(F) er matricen (aij), bFm er matricen på højre side, og x = (x1, x2, ..., xn) ∈ Fn er den ubekendte vektor.

Som et eksempel svarer ligningen

til ligningssystemet

Lad os vende tilbage til det generelle tilfælde Ax = b. Ved en række simple operationer på A og b kan man komme frem til en situation, hvor man rimeligt nemt kan aflæse alle de eventuelle løsninger til det originale ligningssystem.

Se også

Skabelon:Link FA Skabelon:Link FA Skabelon:Link GA Skabelon:Link GA