Potens (matematik): Forskelle mellem versioner

Fra Wikipedia, den frie encyklopædi
Content deleted Content added
ļeng tsmir ļeng ļeng
m Gendannelse til seneste version ved Dipsacus fullonum bot, fjerner ændringer fra 46.109.0.151 (diskussion | bidrag)
Linje 1: Linje 1:
{{harflertydig2|Potens}}
{{harflertydig2|Potens}}
Indenfor [[matematik]] er '''potens''', eller '''potensopløftning''' en regneoperation på linje med [[addition]], [[subtraktion]], [[multiplikation]] og [[Division (matematik)|division]]. Der findes to forskellige definitioner på hvordan en potensopløftning udføres, og ifølge den enkleste af dļeng tsmir ļeng ļengļeng tsmir ļeng ļengļeng tsmir ļeng ļeng\underbrace{x \cdot x \cdot \ldots \cdot x } \\ x \mbox{ gentaget }y\mbox{ gange} \end{matrix}</math>
Indenfor [[matematik]] er '''potens''', eller '''potensopløftning''' en regneoperation på linje med [[addition]], [[subtraktion]], [[multiplikation]] og [[Division (matematik)|division]]. Der findes to forskellige definitioner på hvordan en potensopløftning udføres, og ifølge den enkleste af disse er en potens produktet af det samme tal, <math>x</math>, gentaget <math>y</math> gange, altså:<br />
:<math>\begin{matrix} x^y = \underbrace{x \cdot x \cdot \ldots \cdot x } \\ x \mbox{ gentaget }y\mbox{ gange} \end{matrix}</math>
hvor <math>x</math> omtales som ''roden'', ''basen'' eller ''grundtallet'', og <math>y</math> kaldes for ''potenseksponenten'' eller bare ''eksponenten''.ļeng tsmir ļeng ļengses '''Syv i fjerde potens''' (eller blot '''Syv i fjerde'''), og det beregenes som '''7·7·7·7 = 2401'''.
hvor <math>x</math> omtales som ''roden'', ''basen'' eller ''grundtallet'', og <math>y</math> kaldes for ''potenseksponenten'' eller bare ''eksponenten''.

== Notation ==
Skrivemåden <math> x^y</math> læses som <math>x</math>'' i ''<math>y</math>'' 'ende potens'', dvs. grundtallet <math>x</math> siges som et mængdetal, mens eksponenten <math>y</math> siges som et ordenstal. For eksempel:
* '''7<sup>4</sup>''' læses '''Syv i fjerde potens''' (eller blot '''Syv i fjerde'''), og det beregenes som '''7·7·7·7 = 2401'''.
* '''2<sup>3</sup>''' læses '''To i tredje potens''', eller '''To i tredje''', og beregnes sådan her: '''2·2·2 = 8'''.
* '''2<sup>3</sup>''' læses '''To i tredje potens''', eller '''To i tredje''', og beregnes sådan her: '''2·2·2 = 8'''.
* '''21<sup>0</sup>''' læses '''Enogtyve i nulte potens''' og er lig med '''1'''. Dette kan f.eks. udledes som 21<sup>1</sup>*21<sup>-1</sup>=<math>\frac{21}{21}</math>=1.
* '''21<sup>0</sup>''' læses '''Enogtyve i nulte potens''' og er lig med '''1'''. Dette kan f.eks. udledes som 21<sup>1</sup>*21<sup>-1</sup>=<math>\frac{21}{21}</math>=1.
Linje 11: Linje 16:
* '''7<sup>3</sup>''' = '''7·7·7 = 343'''
* '''7<sup>3</sup>''' = '''7·7·7 = 343'''
* '''8<sup>3</sup>''' = '''8·8·8 = 512'''
* '''8<sup>3</sup>''' = '''8·8·8 = 512'''
* '''9<sup>3</sup>ļeng tsmir ļeng ļengller '''x**y'''.
* '''9<sup>3</sup>''' = '''9·9·9 = 729'''
* '''11<sup>3</sup>''' = '''11·11·11 = 1331'''
* '''12<sup>3</sup>''' = '''12·12·12 = 1728'''

På [[computer]]e bruger man i visse situationer en lidt anden skrivemåde, fordi skrivemåden med eksponenten i superscript ("hævet tekst") er utilgængelig eller besværlig at bruge: I f.eks. [[programmeringssprog]] og [[regneark]] skrives regneoperationen <math>x^y</math> som '''x^y''', '''x↑y''' eller '''x**y'''.


== Matematisk definition ==
== Matematisk definition ==
Linje 18: Linje 27:
Den anden metode involverer den [[Naturlig eksponentialfunktion|naturlige eksponentialfunktion]] og den [[Naturlig logaritme|naturlige logaritme]], som [[infinitesimalregning]]en fastlægger en definition på: Den gør det muligt at beregne en potens <math>x^y</math> hvor grundtallet <math>x</math> kan være ethvert positivt [[Reelle tal|reelt tal]], og eksponenten <math>y</math> ethvert reelt tal. Til gengæld slår denne metode fejl hvis man prøver at bruge den i situationer hvor grundtallet <math>x</math> er et negativt tal.
Den anden metode involverer den [[Naturlig eksponentialfunktion|naturlige eksponentialfunktion]] og den [[Naturlig logaritme|naturlige logaritme]], som [[infinitesimalregning]]en fastlægger en definition på: Den gør det muligt at beregne en potens <math>x^y</math> hvor grundtallet <math>x</math> kan være ethvert positivt [[Reelle tal|reelt tal]], og eksponenten <math>y</math> ethvert reelt tal. Til gengæld slår denne metode fejl hvis man prøver at bruge den i situationer hvor grundtallet <math>x</math> er et negativt tal.


Tilsammen fastlægger disse to definitioner hvordan man beregner <math>x^y</math> så længe ''enten'' grundtallet <math>x</math> ikke er negativt, ''eller'' eksponenten <math>y</math> er et helt tal.
Tilsammen fastlægger disļeng tsmir ļeng ļengļeng tsmir ļeng ļengļeng tsmir ļeng ļengļeng tsmir ļeng ļengļeng tsmir ļeng ļengļeng tsmir ļeng ļengļeng tsmir ļeng ļengļeng tsmir ļeng ļengļeng tsmir ļeng ļengļeng tsmir ļeng ļengļeng tsmir ļeng ļengļeng tsmir ļeng ļengļeng tsmir ļeng ļengļeng tsmir ļeng ļengļeng tsmir ļeng ļengļeng tsmir ļeng ļengļeng tsmir ļeng ļengļeng tsmir ļeng ļeng

=== Potenser med heltallige eksponenter ===
Så længe eksponenten er et positivt [[heltal]], gælder den beskrivelse der er nævnt i indledningen, og denne regneoperation kan man udføre på enhver værdi af roden <math>x</math>. Hvis <math>x</math> er negativ, gælder i øvrigt, at når eksponenten <math>y</math> er lige, bliver <math>x^y</math> et positivt tal, mens ulige rodeksponenter giver et negativt tal.

Hvis man [[Multiplikation|multiplicerer]] ("ganger") et tal med 1, får man tallet selv: Man kan altså uden videre skrive definitionen fra indledningen om til<br />
Hvis man [[Multiplikation|multiplicerer]] ("ganger") et tal med 1, får man tallet selv: Man kan altså uden videre skrive definitionen fra indledningen om til<br />
:<math>\begin{matrix} x^y = 1 \cdot \underbrace{x \cdot x \cdot \ldots \cdot x } \\ x \mbox{ gentaget }y\mbox{ gange} \end{matrix}</math>
:<math>\begin{matrix} x^y = 1 \cdot \underbrace{x \cdot x \cdot \ldots \cdot x } \\ x \mbox{ gentaget }y\mbox{ gange} \end{matrix}</math>

Versionen fra 22. okt. 2014, 19:45

For alternative betydninger, se Potens.

Indenfor matematik er potens, eller potensopløftning en regneoperation på linje med addition, subtraktion, multiplikation og division. Der findes to forskellige definitioner på hvordan en potensopløftning udføres, og ifølge den enkleste af disse er en potens produktet af det samme tal, , gentaget gange, altså:

hvor omtales som roden, basen eller grundtallet, og kaldes for potenseksponenten eller bare eksponenten.

Notation

Skrivemåden læses som i 'ende potens, dvs. grundtallet siges som et mængdetal, mens eksponenten siges som et ordenstal. For eksempel:

  • 74 læses Syv i fjerde potens (eller blot Syv i fjerde), og det beregenes som 7·7·7·7 = 2401.
  • 23 læses To i tredje potens, eller To i tredje, og beregnes sådan her: 2·2·2 = 8.
  • 210 læses Enogtyve i nulte potens og er lig med 1. Dette kan f.eks. udledes som 211*21-1==1.
  • 33 = 3·3·3 = 27
  • 43 = 4·4·4 = 64
  • 53 = 5·5·5 = 125
  • 63 = 6·6·6 = 216
  • 73 = 7·7·7 = 343
  • 83 = 8·8·8 = 512
  • 93 = 9·9·9 = 729
  • 113 = 11·11·11 = 1331
  • 123 = 12·12·12 = 1728

computere bruger man i visse situationer en lidt anden skrivemåde, fordi skrivemåden med eksponenten i superscript ("hævet tekst") er utilgængelig eller besværlig at bruge: I f.eks. programmeringssprog og regneark skrives regneoperationen som x^y, x↑y eller x**y.

Matematisk definition

Der findes to forskellige definitioner på hvordan man beregner : Den definition der er nævnt i indledningen gælder i sig selv kun for en positiv heltallig eksponent , men den kan "udbygges" til at gælde for alle heltallige eksponenter, inklusiv 0 og negative tal, og den gælder for ethvert reelt grundtal .

Den anden metode involverer den naturlige eksponentialfunktion og den naturlige logaritme, som infinitesimalregningen fastlægger en definition på: Den gør det muligt at beregne en potens hvor grundtallet kan være ethvert positivt reelt tal, og eksponenten ethvert reelt tal. Til gengæld slår denne metode fejl hvis man prøver at bruge den i situationer hvor grundtallet er et negativt tal.

Tilsammen fastlægger disse to definitioner hvordan man beregner så længe enten grundtallet ikke er negativt, eller eksponenten er et helt tal.

Potenser med heltallige eksponenter

Så længe eksponenten er et positivt heltal, gælder den beskrivelse der er nævnt i indledningen, og denne regneoperation kan man udføre på enhver værdi af roden . Hvis er negativ, gælder i øvrigt, at når eksponenten er lige, bliver et positivt tal, mens ulige rodeksponenter giver et negativt tal.

Hvis man multiplicerer ("ganger") et tal med 1, får man tallet selv: Man kan altså uden videre skrive definitionen fra indledningen om til

Nu giver det mening at tale om potenser med eksponenten ; hvis man undlader at multiplicere med (eller: "gør det nul gange"), er blot éttallet tilbage. Deraf følger, at

for alle værdier af .

Når man beregner , får man mellemresultater der er stigende eksponenter af for hver gang man multiplicerer med . Omvendt kan man "fortryde" en multiplikation med ved at dividere med og derved reducere mellemresultatets potenseksponent med 1. Denne "fortrydelsesret" kan udnyttes til at udvide definitionen til også at omfatte negative heltal:

Potenser med reelle eksponenter

Ved hjælp af infinitesimalregningen kan man fastlægge én ganske bestemt eksponentiel funktion; den såkaldte naturlige eksponentialfunktion, , hvor e er en matematisk konstant. Den gør det i første omgang muligt at beregne en potens med grundtallet og ethvert reelt tal .
Tilsvarende definerer infinitesimalregningen den inverse funktion til , nemlig den naturlige logaritme, og ved hjælp af disse to funktioner kan man definere potensen for ethvert positivt, reelt grundtal og enhver reel eksponent :

Bemærk at der ikke direkte findes funktionsforskrift for den naturlige logaritme og eksponentialfunktion; en formel der giver et eksakt svar på hvad er for en given eksponent . Computere og lommeregnere bruger taylorpolynomier og andre metoder til at finde en tilnærmet værdi når de skal regne med disse to funktioner.

Regneregler for potenser

Af definitionerne kan man udlede de 5 potensregler, som bl.a. kan bruges ved løsning af ligninger. Som udgangspunkt gælder potensreglerne kun for positive grundtal.

Ud over de 5 potensregler gælder der et antal regler i forbindelse med logaritme og rod.

Logaritmen til en potens kan skrives som produktet af eksponenten og logaritmen til grundtallet i potensen. Dette gælder helt uanset logaritmens grundtal:

Kvadratroden, kubikroden og mere generelt "den n'te rod" af et tal kan beskrives som potensopløftninger, idet

Se også

Fakultet (matematik), Toerpotens