Relation (matematik)

Fra Wikipedia, den frie encyklopædi
Gå til: navigation, søg
Eksempel på en simpel relation R, som forbinder elementerne 1, 2 og 3 i mængden A til venstre med elementerne 5 og 6 i mængden B til højre.

En relation (også kaldet en afbildning) er i matematisk forstand en sammenknytning mellem elementer fra to eller flere forskellige mængder. Illustrationen til højre viser et eksempel på en relation R mellem to mængder, A og B: Relationen knytter bestemte elementer fra A sammen med elementer fra B, hvilket er vist som pile mellem de relevante elementer. Som et "hverdagseksempel" på en relation kan man tænke sig, at mængden A på illustrationen repræsenterer en husstand, med medlemerne "1", "2" og "3", mens elementerne i mængden B er husstandens telefoner: "5" er husets fælles fastnet-telefon; på dette nummer kan man (som regel) komme i kontakt med alle tre medlemmer i husstanden, så derfor er der pile hertil fra alle tre medlemmer af husstanden. "6" er en mobiltelefon, der kun bruges af ét af husstandens medlemmer; derfor er der kun én pil der fører til telefon "6".

Notation[redigér | redigér wikikode]

Relationen i det indledende eksempel skrives helt kort:

R: A \rightarrow B

Udtrykt "ikke-matematisk" kan det læses som: "Relationen R forbinder medlemmer af mængden A, med medlemmer af mængden B".

Sammenknytning mellem konkrete elementer skrives som R(a) = b og kan bruges til at definere selve relationen. Skrevet på denne form ser ovenstående eksempel-relation således ud:

R = {(1; 5), (1; 6), (2; 5), (3; 5)}

Bemærk at hver pil mellem de to mængder på illustrationen ovenfor, svarer til et af de talpar der er omgivet af runde parenteser.

Relationer og funktioner[redigér | redigér wikikode]

Selv om ordet relation eller afbildning undertiden bliver brugt synonymt med begrebet funktion, er der forskel: Funktion er et specialtilfælde af relationer, hvor der er netop to mængder involveret (kaldet definitionsmængde og værdimængde), og hvor der til alle elementer i definitionsmængden er knyttet netop ét element i værdimængden.

Klassifikation af relationer[redigér | redigér wikikode]

En relation ~ på en mængde M kaldes

  • refleksiv, hvis x ~ x for alle xM,
  • symmetrisk, hvis x ~ yy ~ x for alle x, yM,
  • antisymmetrisk, hvis x ~ y og y ~ xx = y for alle x, yM,
  • transitiv, hvis x ~ y og y ~ zx ~ z for alle x, y, zM,

En partiel ordning ≤ på en mængde M kaldes en total ordning, hvis xy eller yx for alle x, yM.

Matematik Stub
Denne artikel om matematik er kun påbegyndt. Hvis du ved mere om emnet, kan du hjælpe Wikipedia ved at udvide den.