Trekanttal

Fra Wikipedia, den frie encyklopædi
Gå til: navigation, søg

1:

+               x

3:

 x               x
+ +             x x

6:

  x               x
 x x             x x
+ + +           x x x

10:

   x               x
  x x             x x
 x x x           x x x
+ + + +         x x x x

15:

    x               x 
   x x             x x 
  x x x           x x x 
 x x x x         x x x x 
+ + + + +       x x x x x 

21:

     x               x 
    x x             x x 
   x x x           x x x 
  x x x x         x x x x 
 x x x x x       x x x x x 
+ + + + + +     x x x x x x 

Trekanttal er tal, der indgår i talfølgen 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120 ... – altså således at det første trekanttal er 1, det andet er 1+2, det tredje er 1+2+3 og så videre.

Man kan beregne det n'te tal i rækken, T_n, ved hjælp af formlen

T_n = 1+2+3+\ldots+n = \frac{n \cdot (n+1)}{2}

hvilket er et specialtilfælde af formlen for summen af en differensrække (aritmetisk række).

Summen af to på hinanden følgende trekanttal er et kvadrattal.

Trekanttal hedder således fordi T_n objekter kan placeres i en trekantet figur som det ses til højre. For eksempel er der 10 kegler i bowling, og 15 baller i almindelig pool. Se også figurtal.

Det er muligt for et tal på én gang at være trekanttal og kvadrattal. Der er uendeligt mange tal der har begge disse egenskaber:

  • 1, 36, 1225, 41616, 1413721, …

Ekstern henvisning[redigér | redigér wikikode]

Matematik Stub
Denne artikel om matematik er kun påbegyndt. Hvis du ved mere om emnet, kan du hjælpe Wikipedia ved at udvide den.