Mængdelære

Fra Wikipedia, den frie encyklopædi
Gå til: navigation, søg

Mængdelære er den matematiske teori om mængder, der repræsenterer mængder af abstrakte objekter. Mængdelæren er sammen med logik grundstenen i al moderne matematik. Mængdelæren gør kun brug af en slags elementer, mængder, og en relation, tilhørsrelationen.

Mængdelæren blev især udviklet i perioden 1880-1920. Georg Cantor definerede de første begreber, Bertrand Russell og David Hilbert bidrog væsentligt til at gøre det til en konsistent teori. Mængdebegrebet defineres af Zermelo-Fraenkels aksiomer, samt som oftest udvalgsaksiomet. Man ser derfor ofte mængdeaksiomerne skrevet som ZFC, hvor C'et står for "axiom of choice". John Venn udviklede Venn-diagrammet til visualisering af relationer og logiske forbindelse mellem mængder, som en videreudvikling af det tidligere Euler-diagram, udviklet af Leonhard Euler.

Som eksempel på hvordan matematik kan udledes af mængdelæren, kan de naturlige tal udtrykkes som mængder. 0 svarer til den tomme mængde, \emptyset, 1 til mængden indeholdende 0, dvs.den tomme mængde, 2 til mængden indeholdende {0,1}, dvs. den tomme mængde og 'mængden indeholdende den tomme mængde'. Hvert tal svarer altså til mængden af alle foregående tal. Dette giver direkte definitionen af at naturligt tals efterfølger, altså til +1. Herefter er det enkelt at aflede +, * og andre funktioner.


Matematik Stub
Denne artikel om matematik er kun påbegyndt. Hvis du ved mere om emnet, kan du hjælpe Wikipedia ved at udvide den.