Spring til indhold

Bruger:Rafaldo

Fra Wikipedia, den frie encyklopædi

For to konvergente følger hvor det gælder at = A, A og = B, B vil vi bevise at det gælder at:

(I) = A+B, A+B

(II) = A*B, A*B

(I)[redigér | rediger kildetekst]

For ethvert >0 findes et tal N , så | - (A+B)| < ifølge trekantsuligheden, |c+d||c|+|d|, giver det os: | - (A+B)||


vi ved at A og derfor må der findes et så:

for alle n da vi selv fastsætter og dermed uden problemer kan fastsætte det til . og dermed må der også findes et for b:

for alle n vælger vi nu det største tal af og vil begge følger ligge inden for , og dermed har vi bevist at følgerne multipliceret vil ligge indenfor og dermed at = A+B

(II)[redigér | rediger kildetekst]

Når vi har et >0, så må der findes et N sådan at | Igen benyttes trekantsuligheden og får fra (I):

Som i (I) vil vi vise at hvert af leddene og |B|*| er mindre end når vi gør n stort nok. Vi starter med det simpleste led, |B|*|. Hvis |B| = 0 er der intet at vise, så vi definere at |B| 0. Da det gælder at = A må vi dermed kunne finde et sådan at når og dermed også at:

|B|*| <

Det andet led, , kan behandles som det første, dog er det lidt mere kompliceret da ikke er konstant. Vi ved imidlertid da = A at der må derfor findes et når n . Dette bruger vi sammen med = B og ved at der må være når . Lader vi n > får vi følgende udtryk:

Reduceret bliver det:

Sammenfatter vi beviset giver det os: