Bruger:Yahusku/sandkasse

Fra Wikipedia, den frie encyklopædi

A SHORT HISTORY OF MAGNETIC RESONANCE IMAGING FROM A EUROPEAN POINT OF VIEW

Looking back at the main protagonists involved in MR imaging is vital for an understanding of the development of the modality. The topic is interesting, but rather sensitive.

Like any history, the history of MR imaging has no real beginning.

"Everything flows and nothing stays," as Heraklitos pointed out.

One major contribution to the technique can be found in Napoleon's realm. Jean-Baptiste-Joseph Fourier served three years as the secretary of the Institut d'Egypte at the beginning of the nineteenth century, and later became prefect of the Isère département in France. However, the focus of his life was mathematics, and without his Fourier transform we would not be able to create MR images.

Jean-Baptiste-Josepf Fourier

In 1946, two scientists in the United States, independently of each other, described a physicochemical phenomenon which was based upon the magnetic properties of certain nuclei in the periodic system. This was 'nuclear magnetic resonance', for short 'NMR' [4, 48].

The two scientists, Felix Bloch and Edward M. Purcell, were awarded the Nobel Prize in Physics in 1952.

 Felix Bloch and Edward M Purcell

Purcell was born in Illinois in the United States of America. He worked at the Massachusetts Institute of Technology, MIT, and later joined the faculty of Harvard University.

Bloch was born in Zurich in 1905 and taught at the University of Leipzig until 1933; he then emigrated to the United States and was naturalized in 1939. He joined the faculty of Stanford University at Palo Alto in 1934 and became the first director of CERN in Geneva in 1962. In 1983 he died in Zurich. Bloch was a protagonist for the interaction between Europe and the United States. NMR and MRI would not exist without this interaction.

At some stage of their career, many European scientist contemplate emigration to the U.S.A. Some move transatlantic and some even stay for good. Others return. There is hardly any movement in the other direction. The historical reasons were different prior to and after the Second World War. Before the war, plain survival for many depended on emigration, or it was at least guided by political necessity. It was the attraction of the Statue of Liberty which made scientists move westward.

After the war, research facilities in the United States were more attractive than those in Europe because the academic system in the U.S.A. was more flexible than the university structures in Europe - and dollars were plentiful for research and for personal income.

Bloch and Purcell were not the only scientists working in the field. The 1920s had been roaring and inflationary, but also extremely fruitful in science. In 1924, Wolfgang Pauli suggested the possibility of an intrinsic nuclear spin. The year after, George Eugene Uhlenbeck and Samuel A. Goudsmit introduced the concept of the spinning electron. Two years later Pauli and Charles Galton Darwin developed a theoretical framework for grafting the concept of electron spin into the new quantum mechanics developed the year before by Edwin Schrödinger and Werner Heisenberg. Pauli, Uhlenbeck, and Goudsmit went to the United States to work. The British stayed in Britain - at that time.

This development continued in the 1930s. After their initial pacemaking work, in 1933, Otto Stern and Walther Gerlach were able to measure the effect of the nuclear spin by deflection of a beam of hydrogen molecules. During the early 1930s, Isidor Isaac Rabi's laboratory at Columbia University in New York became a major center for related studies.

 Otto Stern and I.I. Rabi

Rabi's research was successful, but only the visit by Cornelis Jacobus Gorter from the Netherlands in September 1937 finally showed how to measure the nuclear magnetic moment. Gorter had tried similar experiments and failed. Rabi accepted and realized Gorter's suggestions concerning his experiments, changed them, and was able to observe resonance experimentally. This led to the publication of 'A New Method of Measuring Nuclear Magnetic Moment' in 1938 [49].

C.J. Gorter

Gorter first used the term 'nuclear magnetic resonance' in a publication which appeared in the war-torn Netherlands in 1942, attributing the coining of the phrase to Rabi [20].

The Second World War had a major influence upon research - and its interruption. Germany, for instance, the leading country in science and medicine at the time, quit the race in the 1930s.

But there was another country in which major contributions to nuclear magnetic resonance were made. They originated in Kazan in Tatarstan, which was part of the Soviet Union at that time and is now an independent republic within Russia. Until recently, Russian contributions to NMR and radiology were frowned upon or not even discussed in the West.

Electron spin resonance was discovered at Kazan's university by Yevgeni K. Zavoisky towards the end of the war [54]. Zavoisky had first attempted to detect NMR in 1941, but like Gorter he had failed.

Yevgeni K. Zavoisky

The final breakthrough came with Bloch and Purcell in 1946.

During the next few decades NMR developed in a wide range of applications. Hardly any of them were medical, although in vivo NMR already had been performed since the early 1950s.

In 1955/1956, Erik Odeblad and Gunnar Lindström from Stockholm published their first NMR studies, including relaxation time measurements, of living cells and excised animal tissue [47]. Odeblad continued working on tissues throughout the 1950s and 1960s. He is the major early contributor to NMR in medicine.

Oleg Jardetzky and coll. performed sodium NMR studies in blood, plasma and red blood cells in 1956 [32]. T1- and T2-measurements of living frog skeletal muscle were published by Bratton and coll. in 1965 [5]. In the 1960s and 1970s a very large amount of work was published on relaxation, diffusion, and chemical exchange of water in cells and tissues of all sorts. In 1967, Ligon reported the measurement of NMR relaxation of water in the arms of living human subjects [40]. In 1968, Jackson and Langham published the first NMR signals from a living animal [31].

In the late 1960s, Jim Hutchison at the University of Aberdeen in Scotland began working with magnetic resonance on in vivo electron spin resonance studies in mice.

Hazlewood added to the work on relaxation time measurements by studying developing muscle tissue [24, 25]. Cooke and Wien worked on similar topics [9]. Hansen added NMR studies of brain tissue [23].

Others joined in this kind of research, among the better known being the research groups of Raymond Damadian at Downstate Medical Center in Brooklyn and Donald P. Hollis at Johns Hopkins University in Baltimore. Damadian's group measured T1 and T2 relaxation times of excised normal and cancerous rat tissue and stated that tumorous tissue had longer relaxation times than normal tissue [11]. Hollis and his collaborators achieved similar results, but were more balanced and scientifically critical in their postulations and deductions [29].

Damadian thought that he had discovered the ultimate technology to detect cancer and, in 1972, filed a patent claim for an 'Apparatus and Method for Detecting Cancer in Tissue' [10]. The patent included the idea but no description of a method or technique of using NMR to scan the human body.

In February 1973 Abe and his colleagues applied for a patent on a targeted NMR scanner [1]. They published this technique in 1974 [53]. Damadian reported a similar technique in a publication two years later, dubbed 'field-focusing NMR (Fonar)' which contained a image of scanned volume elements through a mouse [13].

Still today Damdian trys to maintain the myth that tumor detection is possible with the method he described. However, it is impossible and would be detrimental to patients to try to detect, diagnose or characterize malignancies in this way. Furthermore, his apparatus (see picture below) is not an imaging device, and cannot be adapted for imaging.


Damadian's equipment to measure relaxation times in vivo.


Ganssen's equipment to measure blood flow.

Flow measurements by NMR had also been discussed for some time. By 1959, Jay Singer had studied blood flow by NMR relaxation time measurements of blood in living humans [52]. Such measurements were not introduced into common medical practice until the mid-1980s, although a patent for a whole-body NMR machine to measure blood flow in the human body was already filed by Alexander Ganssen in early 1967 [18]. This machine was meant to measure the NMR signal of flowing blood at different locations of a vessel with a series of small coils, allowing to calculate the blood flow within that vessel. It could be described as the first MR scanner. However, it is not an MR imaging machine.

Actual in vivo NMR spectroscopy took off in Oxford from 1974, with the group of Rex E. Richards and George K. Radda. Among others, David Hoult and David G. Gadian belonged to this group.

Spatial Encoding

All the experiments up to now had been one-dimensional and lacked spatial information. Nobody could determine exactly where the NMR signal originated within the sample. After MR imaging had first been described, several individuals and companies claimed that they had achieved imaging earlier, but their machines were not conceived of as imagers.

In roentgenology, the times of conventional imaging ended in September 1971, when the world's first axial x-ray computed tomograph was installed in England.

In the same month, Paul Lauterbur of the State University of New York at Stony Brook had the idea of applying magnetic field gradients in all three dimensions and the computerized axial tomography (CAT)-scan back-projection (= projection-reconstruction) technique to create NMR images. He published the first images of two tubes of water in March 1973 in the journal Nature [35]. This was followed later in the year by the picture of a living animal, a clam, and in 1974 by the image of the thoracic cavity of a mouse [36]. Lauterbur called his imaging method zeugmatography, a term which was later replaced by (N)MR imaging.


Lauterbur and the first magnetic resonance images (from Nature)

Field gradients had been used before. They are an essential feature of the study of molecular diffusion in liquids by the spin-echo method developed by Erwin L. Hahn in 1950 [22]; his group used a gradient approach also to create a storage memory [2]. In 1951, Roger Gabillard from Lille in France had imposed one-dimensional gradients on samples [16, 17]. Carr and Purcell described the use of gradients in the determination of diffusion in 1954 [7].

However, Lauterbur's idea revolutionized NMR because it opened the field to imaging. Many of today's innovations were thought of and developed in his laboratory in the late 1970s and 1980s [3, 15, 34, 37-39, 46, 51]. When he presented his approach to NMR imaging at the International Society of Magnetic Resonance (ISMAR) meeting in January 1974 in Bombay, Raymond Andrew, William Moore, and Waldo Hinshaw from the University of Nottingham, England, were in the audience and took note. As a result, Hinshaw developed his own approach to MR imaging with their sensitive point method [26, 27].

In April 1974, Lauterbur gave a talk at a conference in Raleigh, North Carolina. This conference was attended by Richard Ernst from Zurich, who realized that instead of Lauterbur's back-projection one could use switched magnetic field gradients in the time domain. This led to the 1975 publication, 'NMR Fourier Zeugmatography' by Anil Kumar, Dieter Welti, and Richard Ernst [33], and to the basic reconstruction method for MR imaging today.


Richard Ernst and the first two-dimensional Fourier-transformed images.

A second NMR group in Nottingham got also involved in MR imaging. Its leader, Peter Mansfield, worked on studies of solid periodic objects, such as crystals. At a Colloque Ampère conference in Cracow in September 1973, Mansfield and his collaborator Peter K. Grannell presented a one-dimensional interferogram to a resolution of better than 1 mm [43]. This, however, cannot be considered an MR image. However, one year later, Alan Garroway and Mansfield filed a patent and published a paper on image formation by NMR [19]. By 1975, Mansfield and Andrew A. Maudsley proposed a line technique which, in 1977, led to the first image of in vivo human anatomy, a cross section through a finger. In 1978, Mansfield presented his first image through the abdomen [44, 45].

Peter Mansfield

In 1977, Hinshaw, Paul Bottomley, and Neil Holland, succeeded with an image of the wrist [28]. Damadian and collaborators created a cross section of a human chest [12]. More human thoracic and abdominal images followed, and by 1978, Hugh Clow and Ian R. Young, working at the British company EMI, reported the first transverse NMR image through a human head [8].

Two years later, William Moore and colleagues presented the first coronal and sagittal images through a human head.

In the research group of John Mallard at the University of Aberdeen, Jim Hutchison, Bill Edelstein, and coll. developed the spin-warp technique. They published a first image through the body of a mouse in 1974 [14, 30]. Margaret Foster contributed much to this work.


The prototype MR equipment in Aberdeen with Jim Hutchison.

At this time, many of the researchers working in Britain went to the United States. It was a major brain-drain for British universities, but there was (and still is) little money in the British university system. Most of the researchers stayed abroad, whereas many of the Continental Europeans who worked in the U.S.A. in the late 1970s and early 1980s returned home.

Some of them had performed quite impressive research in the United States; among them was Robert N. Muller, who - in 1982 - described off-resonance imaging, a technique known today as 'magnetization-transfer' imaging [46]. Rinck et al. described the first fluorine lung images [51].


The first fluorine images of a lung (Rinck et al.; 1982).


The first magnetization-transfer images (Muller et al.; 1982).


Peter Rinck and Robert N. Muller at Paul Lauterbur's laboratory after the first acquisition of a three-dimensional MR image of the heart (1982).

Paul C. Lauterbur received the Nobel Prize in Medicine or Physiology in 2003 for the invention of magnetic resonance imaging. Peter Mansfield shared the Nobel Prize for his further development of MRI.

In the 1980s, Continental Europe started to contribute intensively to MR imaging. Rapid imaging originated in European laboratories. Jürgen Hennig, together with A. Nauerth and Hartmut Friedburg, from the University of Freiburg introduced RARE (rapid acquisition with relaxation enhancement) imaging in 1986. This technique is probably better known under the commercial names of fast or turbo spin-echo.

Jürgen Hennig

At about the same time, FLASH (fast low angle shot) appeared, opening the way to similar gradient-echo sequences. This sequence was developed at Max-Planck-Institute, Göttingen, by Axel Haase, Jens Frahm, Dieter Matthaei, Wolfgang Hänicke, and Dietmar K. Merboldt.

 Axel Haase and Jens Frahm

FLASH was very rapidly adopted commercially. RARE was slower, and echo-planar imaging (EPI) - for technical reasons - took even more time. Echo-planar imaging had been proposed by Mansfield's group in 1977, and the first crude images were shown by Mansfield and Ian Pykett in the same year [41]. Roger Ordidge presented the first movie in 1981. Its breakthrough came with the invention of shielded gradients [42].

Clinical Applications

At about this time, MR imaging started being clinically evaluated. One of the most admirable research groups worked at Hammersmith Hospital in London. The head of the group was Robert E. Steiner, but Ian R. Young and Graeme M. Bydder were the moving forces. Among others, Frank H. Doyle and Jacqueline M. Pennock supplemented this group.

Because MR imaging is at the crossroads between medicine and chemistry, physics, and computer science, groups with strong interdisciplinary relationships and cross-fertilization became scientifically extremely fruitful, which led to the 'odd couple' system, involving one physician and one scientist. At congresses, you would always see Graeme Bydder together with Ian Young, a seemingly ideal combination. There were (and are) other couples like them, but apparently this kind of relationship between radiologists and physicists does not fit into all European academic systems.

 Graeme Bydder and Ian Young

Early clinical imaging was extremely difficult, time-consuming, and often disappointing. Spin-echo imaging, for instance, was a bigger step than many imagine. Today it is taken for granted, and it has helped MR imaging immensely to become a routine technique.

Early MR images were mainly based upon proton-density differences, later upon differences in T1-weighting. By 1982-1983, the Hammersmith and Wiesbaden groups pointed out that long heavily T2-weighted SE sequences were better at highlighting pathology [6, 50]. It took some years until this was generally accepted, mostly because many companies claimed that long TE was neither possible nor necessary.

Another European affair was the development of contrast agents. The possible concept had been described at universities in the United States by Maria Helena Mendonça-Dias and Paul C. Lauterbur [39], by Robert Brasch, and Gerald Wolf. However, most of the commercial development and scientific research took place in Europe. Schering submitted a patent application for Gd-DTPA dimeglumine in July 1981 in a project involving Hanns-Joachim Weinmann and Ulrich Speck. In 1984, Dennis H. Carr from the Hammersmith and Wolfgang Schörner from Berlin published the first images in men. Since the late 1980s, Magnevist has been commercially available, followed shortly afterwards by Dotarem from Guerbet in Paris.

Hanns-Joachim Weinmann

MR Equipment

With the exception of the scientific instrument manufacturers, the hardware makers had no background in NMR. The most important scientific manufacturers were Varian in the U.S.A., JEOL in Japan, and Bruker-Spectrospin in Europe. Most scientific developments in MR imaging were done on Bruker machines.

The first hardware manufacturer to get involved in whole-body imaging was EMI in 1974. Later the company was taken over by Picker (later Marconi, today Philips). Philips started research into MR imaging at the same time; P. Rob Locher, André Luiten, and Piet van Dijk were seen at many scientific meetings. Siemens got involved in 1977, Johnson & Johnson/Technicare in 1978/79, Instrumentarium at about the same time, and the others followed in the 1980s.

M&D Aberdeen was a company originating from the research group at Aberdeen University. It had one machine in Geneva, but it disappeared a long time ago, as have a number of other companies.

Another effort was the Finnish MR imaging machine. Raimo E. Sepponen, together with a number of other researchers, among them the surgeon Jorma T. Sipponen, aimed to develop a method and device for detection of internal hemorrhages. Their first clinical MR imaging model was installed at Helsinki University Central Hospital in June 1982 operating at a field strength of 0.17 T. The second unit operated at 0.02 T, and later units operating at 0.04 T, which at that time was politico-commercially a step in the wrong direction.

With few exceptions, all early magnets for MR imagers were produced by Oxford Magnets. Still today many magnets come from companies in the Oxford area.

Teaching, Training, Conferences

There was and is an enormous need for user education in magnetic resonance imaging. The first European NMR imaging meeting was held in Nottingham in April 1976, followed by a second conference in Winston-Salem in North Carolina in the U.S.A. in 1981. Soon afterwards, the number of meetings exploded.

Another effort aimed at teaching users in Europe started also in the United States in the early 1980s: the European Workshop on Nuclear Magnetic Resonance in Medicine, now known as the EMRF Foundation. The first Annual Meeting of the European Workshop was held in Mons, Belgium, in 1983, followed by meetings all over Europe. Today, the EMRF Foundation specializes in smaller meetings and supports young scientists with sponsorships and grants. The major European MR meetings are organized by the European Society for Magnetic Resonance in Medicine and Biology which was founded in Geneva in 1983, the European Congress of Radiology, and national radiological, medical physics, and MR societies.

References

1. Abe Zenuemon, Kunio Tanaka, Hotta Masao and Imai Masashi: [Patent] Application. Measurement method from the outside [to obtain] information in the inside applying nuclear magnetic resonance. Japanese patent application 48- l3508, 1973 (application day: 02 February 1973. Patents pending in the United States, England, Germany, France, and the Soviet Union). and : Abe Z, Tanaka K, Hotta M, et al. Non-invasive measurements of biologica1 information with application of NMR. in: Llaurado, Sances, Battocletti (eds). Bio1ogical and c1inical effects of low-frequency electric and magnetic fields. Springfield, IL: Charles C. Thomas 1974. 295-315. 2. Anderson AG, Garwin RL, Hahn EL, Horton JW, Tucker GL, Walker RM. Spin echo serial storage memory. J Appl Phys 1955; 26: 1324-1338. 3. Bernardo ML, Cohen AJ, Lauterbur PC. Radiofrequency coil designs for nuclear magnetic resonance zeugmatography. IEEE Comp Soc 1982; 277-284. 4. Bloch F, Hanson WW, Packard M. Nuclear induction. Phys Rev 1946; 69: 127. 5. Bratton CB, Hopkins AL, Weinberg JW. Nuclear magnetic resonance studies of living muscle. Science 1965; 147: 738. 6. Bydder GM, Steiner RE, Young IR, Hall AS, Thomas DJ, Marshall J, Pallis CA, Legg NJ. Clinical NMR imaging of the brain: 140 cases. AJR 1982; 139: 215-236. 7. Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 1954; 94: 630-638. 8. Clow H, Young IR. Britain's brains produce first NMR scans. New Scientist 1978; 80: 588. 9. Cooke R, Wien R. The state of water in muscle tissue as determined by proton nuclear magnetic resonance. Biophys J 1971; 11: 1002-1017. 10. Damadian R. United States Patent no. 3789832. Filed 17 March 1972, awarded 5 February 1974. Apparatus and method for detecting cancer in tissue. Inventor: Raymond V. Damadian. 11. Damadian RV. Tumor detection by nuclear magnetic resonance. Science 1971; 171: 1151-1153. 12. Damadian R, Goldsmith M, Minkoff L. NMR in cancer: XVI. Fonar image of the live human body. Physiol Chem Phys 1977; 9: 97-100. 13. Damadian R, Minkoff L, Goldsmith M, Stanford M, Kout-cher, J. Field focusing nuclear magnetic resonance (FONAR): visualization of a tumor in a live animal. Science 1976; 194: 1430. 14. Edelstein WA, Hutchison JMS, Johnson G, Redpath TW. Spin-warp NMR imaging and applications to human whole-body imaging. Phys Med Biol 1980; 25: 751-756. 15. Frank JA, Feiler MA, House WV, Lauterbur PC, Jacobson MJ. Measurement of proton nuclear magnetic longitudinal relaxation times and water content in infarcted myocardium and induced pulmonary injury. Abstract. Clinical Research. 1976; 24: 217A. 16. Gabillard R. Résonance nucléaire mesuré du temps de relaxation T2 en présence d'une inhomogenéité de champ magnétique supérieur à la largeur de raie. C R Acad Sci Paris 1951; 232: 1551-1553. 17. Gabillard R. A steady state transient technique in nuclear resonance. Phys Rev 1952; 85: 694. 18. Ganssen A. Bundesrepublik Deutschland - Deutsches Patent-amt: Patentschrift 1566 148. Elektromagnetische Hochfrequenz-spule für Diagnostikeinrichtung. Patentiert für Siemens AG, Berlin und München. Erfinder: Alexander Ganssen. Anmeldetag 10. 3. 1967; Offenlegungstag 2. 4. 1970; Bekanntmachungstag: 17. 10. 1974. 19. Garroway AN, Grannell PK, Mansfield P. Image formation in NMR by a selective irradiative process. J Phys C: Solid State Phys 1974; 7: L457-462. 20. Gorter CJ, Broer LJF. Negative result of an attempt to observe nuclear magnetic resonance in solids. Physica (The Hague) 1942; 9: 591. 21. Grannell PK, Mansfield P. Microscopy in vivo by nuclear magnetic resonance. Phys Med Biol 1975; 20: 477-482. 22. Hahn EL. Spin echoes. Phys Rev 1950; 80: 580-594. 23. Hansen JR. Pulsed NMR study of water in muscle and brain tissue. Biochim Biophys Acta 1971; 230: 482-486. 24. Hazlewood CF, Nichols BL, Chamberlain NF. Evidence for the existence of a minimum of two phases of ordered water in skeletal muscle. Nature 1969; 222: 747-750. 25. Hazlewood CF, Nichols BL, Chang DC, Brown B. On the state of water in developing muscle. A study of the major phase of ordered water in skeletal muscle and its relationship to the sodium concentration. Johns Hopkins Med J 1971; 128: 117. 26. Hinshaw WS. Spin mapping: the application of moving gradients to NMR. Physics Letters 1974; 48A,2: 87-88. 27. Hinshaw WS. Image formation by nuclear magnetic resonance: the sensitive-point method. J Appl Phys 1976; 8: 3709-3721. 28. Hinshaw DS, Bottomley PA, Holland GN. Radiographic thin-section image of the human wrist by nuclear magnetic resonance. Nature 1977; 270: 722-723. 29. Hollis DP, Economou JS, Parks LC, Eggleston JC, Saryan LA, Czeisler JL. Nuclear magnetic resonance studies of several experimental and human malignant tumors. Cancer Research 1973; 33: 2156-2160. 30. Hutchison JMS, Mallard JR, Goll CC. In-vivo imaging of body structures using proton resonance. Proceedings. 18th Ampère Congress. Magnetic resonance and related phenomena. Nottingham 9-14 September 1974. Amsterdam, Oxford: North-Holland Publishing Company. 283-284. 31. Jackson JA, Langham WH. Whole-body NMR spectrometer. Rev Sci Instrum. 1968; 39: 510-513. 32. Jardetzky O. A study of interactions of aqueous sodium ion by nuclear spin resonance. Ph.D. thesis. Univ. of Minnesota. 1956. 33. Kumar A, Welti D, Ernst RR. NMR Fourier zeugmatography. J Magn Res 1975; 18: 69-83. 34. Lai C-M, Lauterbur PC. A gradient control device for complete three-dimensional nuclear magnetic resonance zeugmatographic imaging. J Phys E: Sci Instrum 1980; 13: 747-750. 35. Lauterbur PC. Image formation by induced local interactions: examples of employing nuclear magnetic resonance. Nature 1973; 242: 190-191. 36. Lauterbur PC. Magnetic resonance zeugmatography. Pure and Applied Chemistry 1974; 40: 149-157. 37. Lauterbur PC, Kramer DM, House WV, Chen C-N. Zeug-matographic high resolution nuclear magnetic resonance spectroscopy. Images of chemical inhomogeneity within microscopic objects. J Amer Chem Soc 1975; 97: 6866-6868. 38. Lauterbur PC, Lai C-M, Frank JA, Dulcey Jr CS. In vivo zeugmatographic imaging of tumors. Abstract. Fourth International Conference on Medical Physics. Ottawa, Canada; 25-30 July, 1976. 39. Lauterbur PC, Mendonça Dias H, Rudin AM. Augmentation of tissue proton spin-lattice relaxation rates by in vivo addition of paramagnetic ions. in: Dutton PO, Leigh J, Scarpa A (eds). Frontiers of Biological Energetics. New York: Academic Press 1978. 752-759. 40. Ligon TR. MS thesis. Oklahoma State University. 1967. Among others cited by Budinger TF and Lauterbur PC. Nuclear magnetic resonance technology for medical studies. Science 1984; 226: 288-298. 41. Mansfield P. Multi-planar image formation using NMR spin echoes. J Phys C: Solid State Phys 1977; 10: L55-58. 42. Mansfield P, Chapman B. Active magnetic screening of gradient coils in NMR imaging. J Magn Reson 1986; 66: 573-576. 43. Mansfield P, Grannell PK, Garroway AN, Stalker DC. Multi-pulse line narrowing experiments: NMR "diffraction" in solids? Proceedings. First Specialized Colloque Ampère. Cracow, Poland. 1973. 16-27. 44. Mansfield P, Maudsley AA. Planar spin imaging by NMR. J Phys C: Solid State Phys 1976; 9: L409-411. 45. Mansfield P, Maudsley AA. Line scan proton spin imaging in biological structures by NMR. Phys Med Biol 1976; 21: 847-852. 46. Muller RN, Marsh MJ, Bernardo ML, Lauterbur PC. True 3-D imaging of limbs by NMR zeugmatography with off-resonance irradiation. Europ J Radiol 1983; 3: 286-290. 47. Odeblad E, Bhar BN, Lindström G. Proton magnetic resonance of human red blood cells in heavy water exchange experiments. Arch Biochem Biophys 1956; 63: 221-225. 48. Purcell EM, Torrey HC, Pound RV. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 1946; 69: 37-38. 49. Rabi II, Zacharias JR, Millman S, Kusch P. A new method of measuring nuclear magnetic moment. Phys Rev 1938; 53: 318. 50. Rinck PA, Bielke G, Meves M: Modified Spin-Echo Sequence in Tumor Diagnosis. Proceedings. The Society of Magnetic Resonance in Medicine. Second Annual Meeting. San Francisco 1983. 300-301. and in: Magn Reson Med 1 (1984) 236 (abstract). 51. Rinck PA, Petersen SB, Heidelberger E, Acuff V, Reinders J, Bernardo ML, Hedges LK, Lauterbur PC: NMR Ventilation Imaging of the Lungs Using Perfluorinated Gases. Proceedings. The Society of Magnetic Resonance in Medicine. Second Annual Meeting. San Francisco 1983. 302-303. und in: Magn Reson Med 1 (1984) 237. 52. Singer RJ. Blood-flow rates by NMR measurements. Science 1959; 130: 1652-1653. 53. Tanaka K, Yamada T, Shimizu T, Sano F, Abe Z. Fundamental investigations (in vitro) for a non-invasive method of tumor detection by nuclear magnetic resonance. Biotelemetry 1974; 1: 337-350. 54. Zavoisky EK. J Phys USSR 1945; 9: 211 and 245.

Secondary Literature

o Andrew ER. A historical review of NMR and its clinical applications. in: Steiner RE, Radda GK. Nuclear magnetic resonance and its clinical applications. Brit Med Bull 1984; 40: 115-119. o Grant DM and Harris RK. Encyclopedia of Nuclear Magnetic Resonance. Volume 1 - Historical perspectives. Chichester, New York: John Wiley and Sons. 1996. o Hollis DP. Abusing cancer science. Chehalis, WA (USA): The Strawberry Fields Press 1987. o Kleinfeld S. A machine called Indomitable. New York: Times Books. Toronto: Random House. 1985 [company-sponsored publication]. o Mattson J, Simon M. The pioneers of NMR and magnetic resonance in medicine. Jericho, NY (USA): Dean Books; and Ramat Gan, Israel: Bar-Ilan University Press 1996 [company-sponsored publication]. o Mathur-De Vré R. The NMR studies of water in biological systems. Prog Biophys Mol Biol 1979; 35: 103-134; and: Mathur-De Vré R. Biomedical implications of the relaxation behaviour of water related to NMR imaging. Brit J Radiol 1984; 57: 955-976. o Roessner D, Bozeman B, Feller I, Hill C, Newman N. The role of NSF's support of engineering in enabling technological innovation. III. Magnetic resonance imaging. First year final report January 1997. Prepared for the National Science Foundation. Washington, DC (USA): The Science and Technology Policy Program SRI. (http://www.sri.com/policy/stp/techin). 1997.

Acknowledgements

The pictures were reprinted with the friendly permission of the owners and/or copyright holders: Raymond Andrew, EMRF Archives, and the Nobel Foundation. For some images, no source could be determined.


ПРИВЕТ НОБЕЛЮ ОТ ИВАНОВА

Как советский лейтенант-ракетчик перегнал Америку Татьяна БАТЕНЕВА


Кто же все-таки на самом деле изобрел магнитно-резонансный томограф?

Темы дня:

• 24 октября - день поминовения жертв отечественной космонавтики
• Археологи нашли библейский водопровод
• Человек может жить до 500 лет
• Землетрясениям на Алтае предшествовали необычные события
• Антибиотики и кардиостимуляторы появились благодаря случайности
• Психотерапевты утверждают, что подростки нетрадионной ориентации страдают
• В Приморье произошла крупная экологическая катастрофа

В мировом научном сообществе разгорелся некрасивый скандал вокруг Нобелевских премий 2003 года. Американский физик Рэймонд Дамадьян заявил, что именно он и есть настоящий изобретатель магнитно-резонансной томографии и создатель первого томографа, а премию получили совсем другие люди.

Скандалы вокруг самой престижной в мире научной премии разыгрываются нередко. Но в данном случае ошибается и Рэймонд Дамадьян.

Метод магнитно-резонансной томографии и первый томограф придумал лейтенант Советской Армии 24-летний Владислав Иванов за 13 лет до американцев.

Оскорбленный американский физик публикует за свой счет в ведущих мировых газетах огромные статьи, в которых призывает нобелевских лауреатов 2003 года по медицине и физиологии исправить несправедливость и разделить с ним свою награду, поскольку он первым в мире создал магнитно-резонансный томограф и обладает патентом на сам метод. Как известно, премия в этом году была присуждена американцу Полу Лаутербуру и британцу Питеру Мэнсфилду за изобретение метода магнитно-резонансной томографии ("Известия" подробно писали о методе МРТ 11 октября с.г.: "Магнитный резонанс увидит даже движение мысли").

Однако г-н Дамадьян понапрасну горячится. Принципы построения магнитно-резонансных изображений человеческого тела задолго до него разработал лейтенант Советской Армии Владислав Иванов. Сейчас профессор, доктор технических наук Владислав Александрович Иванов заведует кафедрой измерительных технологий и компьютерной томографии Санкт-Петербургского государственного института точной механики и оптики (СПбГИТМО). Он дал "Известиям" эксклюзивное интервью.

- Как возникла у вас сама идея применить ядерный магнитный резонанс (ЯМР) к исследованию организма человека?

- 45 лет назад я служил на ракетной точке в городе Сучане Приморского края. Занимался навигацией летающих объектов, основанной на магнитном поле Земли. Был у нас прибор, в котором использовался ядерный магнитный резонанс в воде. Тогда само явление уже было известно, но в медицине и биологии еще никем не применялось. Я подумал: человек ведь тоже состоит в основном из воды, значит, можно подобный метод применить и к исследованию организма.

- Куда вы обратились с этой идеей?

- Изложил свои мысли в виде четырех заявок на изобретения. На первую из них - "Свободно-прецессионный протонный микроскоп" - хотел получить патент. Но из Москвы мне пришел ответ, что, если я стану патентовладельцем, придется ежемесячно платить большой налог, что было просто нереально. Послал еще три заявки в Госкомитет по изобретениям.

- Наибольший интерес представляет вторая из заявок Владислава Александровича "Способ исследования внутреннего строения материальных тел" за номером 659411/26, зарегистрированная в Госкомитете СССР по делам изобретений и открытий 21 марта 1960 года, - дополняет проректор СПбГИТМО доктор физико-математических наук Юрий Колесников. - В ней были сформулированы принципы метода, приведена схема прибора, который теперь называется магнитно-резонансный томограф.

Тогда же Иванов сделал еще две заявки на открытия: № 673786 от 18 июля 1960 года "Устройство для определения скорости крови", основанное на ЯМР, и № 673875 от 27 июля того же года "Способ определения скорости движения жидкостей, газов и некоторых подвижных масс, основанный на сдвиге частот свободной прецессии ядер". Прямого отношения к магнитно-резонансным изображениям они не имели, но могли быть применены при изображениях локального пульса, процессов пищеварения, растворения лекарственных препаратов, процессов диффузии и т.п.

- Мои заявки рассматривали в двух институтах физического профиля здесь, в Ленинграде, - продолжает Владислав Александрович. - Некоторые из рецензентов живы и до сих пор, преподают, теперь объясняют студентам принципы МРТ.

- А что они сказали вам тогда?

- Заявки были отвергнуты как нереализуемые. Один большой физик меня просто высмеял, говорил, что для нее нужен компьютер невероятных размеров. А между прочим, вскоре были проведены эксперименты, подтверждающие мое открытие, - получены ЯМР-сигналы от биологических объектов, кажется, яблока и картофеля.

В 1973 году Пол Лаутербур - один из двух новых лауреатов - зафиксировал и разделил МР-сигналы от двух малых образцов воды, находящихся в пробирках диаметром 1 мм, по существу реализовав схему Иванова. А в 1976 году не кто иной, как Рэймонд Дамадьян методом магнитной фокусировки получил изображение живой мыши.

- После публикации этих данных я написал письмо в Госкомитет изобретений и открытий, и мне в соответствии с обнаруженным в архивах описанием по заявке № 659411/26 было выдано авторское свидетельство № 1112266 с сохранением даты приоритета подачи заявки, а именно 21 марта 1960 года.

- А есть ли у вас публикации за рубежом, ссылки на ваш приоритет в работах последователей?

- Опубликоваться за рубежом для нас, военных, было невозможно. Но на Западе меня знают. В справочниках "Who is who" мое имя регулярно указывается с расшифровкой "изобретатель магнитно-резонансных изображений". А в справочнике "500 выдающихся людей мира" под редакцией писателя-фантаста Артура Кларка оно упомянуто среди пяти выдающихся персон из России - рядом с физиком Виталием Гинзбургом, каким-то сыщиком Интерпола, а также директорами Московской консерватории и Сухумского обезьяньего питомника (смеется).

После хрущевского сокращения Вооруженных сил он демобилизовался, приехал в Ленинград, занимался наукой. Принимал участие в создании автопилота для первых спутников, конструировал сопла для ракет, создал два государственных эталона - угловых скорости и ускорения. Последние 20 лет преподает в СПбГИТМО, подготовил более 30 кандидатов и докторов наук. Долгие годы занимался и изобретательством, получил более 150 авторских свидетельств. Самым большим вознаграждением за изобретение была сумма в 500 рублей.

- Изобретательство всегда было таким хождением по мукам, так тебя унижали, что я к этому делу охладел, - говорит Иванов.

- Чему было посвящено ваше последнее изобретение?

- Я придумал "движущиеся картинки" для метро. При движении электропоезда особым образом нарисованные на стенах тоннеля изображения можно "оживить", превратить в короткий фильм.

- Наверное, за вашу идею ухватились рекламисты или дизайнеры?

- Нет, она тоже осталась нереализованной...

В последнее время Иванов отдался своей второй страсти. Пишет стихи, издает сборники, стал членом Союза писателей России. Его единственный сын Дмитрий техникой совсем не увлекается, он - композитор и живет сейчас в Испании. Скандалить по поводу неполученной Нобелевской премии, как американец Дамадьян, Владислав Александрович не стал. Коллеги считают его человеком слишком мягким, а студенты обожают: он никогда не ставит двойки.

Нобелевская нелюбовь

С 1917 года лишь 12 российских ученых были удостоены Нобелевской премии. Американцы получили около 150, англичане - 70, немцы - около 60 премий. Такой разрыв не отвечает нашему истинному вкладу в науку, причиной чему долгая закрытость советской науки, нежелание по идеологическим причинам сотрудничать с Нобелевским комитетом и просто невыдвижение наших ученых своими соотечественниками. Но были случаи, за которые мы до сих пор таим обиду на Нобелевский комитет. Премию 1930 года за открытие спектра комбинационного рассеяния получил Раман, хотя статья Ландсберга и Мандельштама была опубликована раньше. В 1951 году награду получил американец Макмиллан за открытие принципа автофазировки. Нашему Векслеру премия не досталась, потому что Нобелевский комитет не знал, имеются ли в СССР ускорители на этом принципе - они уже работали, но были засекречены. Завойский в 1941 году наблюдал ядерный магнитный резонанс, но и ему помешали режимные причины - в 1952 году премию получили американцы Блох и Перселл за открытие, сделанное тремя годами позже. В 1938 году не получил премию за открытие сверхтекучести и Капица, хотя его статья была опубликована в том же номере, что и аналогичная работа американцев Аллена и Мизинера. Спустя 40 лет Нобелевский комитет вышел из неловкой ситуации, присудив премию Капице за другие работы. Многократно откладывалось решение по Ландау, который был удостоен награды лишь в 1962 году, когда попал в страшную автокатастрофу.

Уже в новейшие времена в 1997 году премию не получил Владлен Летохов, в исследованиях по охлаждению атомов направленным пучком опередивший Чу и Филлипса из США, но не номинированный никем из коллег. В 1997 году премию по физиологии и медицине за изучение оксида азота, сигнальной молекулы для сердечно-сосудистой системы получили американцы Ферчготт, Игарро и Мурад, хотя раньше аналогичные работы сделал Анатолий Ванин. Из 200 последних нобелевских лауреатов 170 работали в США.

Сергей ЛЕСКОВ

СПРАВКА

Явление ядерного магнитного резонанса (ЯМР) основано на отклике ядер атомов, из которых состоит любая, в том числе и живая, материя, на сильное электромагнитное воздействие. Различия в отклике удалось представить в виде "картинки", на которой ясно видно строение внутренних органов человека.

Медицинские магнитно-резонансные томографы - приборы, позволяющие диагностировать патологические изменения в любом органе и системе с высокой точностью. В зарубежной медицине используются с начала 80-х годов ХХ века. В СССР первый МР-томограф появился, по некоторым данным, в 1985 году - в Центральной клинической больнице ("кремлевке"). Сегодня в распоряжении российских врачей десятки этих приборов.