Metrik (matematik)

Fra Wikipedia, den frie encyklopædi
Spring til navigation Spring til søgning
Disambig bordered fade.svg For alternative betydninger, se Metrik. (Se også artikler, som begynder med Metrik)
En illustration, der sammenligner Manhattan-geometri med euklidsk geometri på en flade: I henhold til Manhattan-geometrien, har de tre farvede veje (rød, gul og blå) den samme længde (). I henhold til euklidsk geometri, har den grønne vej længden , og er derved den korteste vej.

En metrik er i matematikken en generaliseret måde at definere afstande på. Metrikken defineres som en funktion der tager to elementer fra en mængde og giver "afstanden" mellem dem som et reelt tal. Et par bestående af en mængde og en metrik kaldes et metrisk rum.

Formel definition[redigér | redigér wikikode]

En metrik er en funktion , der opfylder kravene

  1. (symmetri)
  2. (trekantsuligheden)

hvor , og er elementer i . Det første krav siger, at afstanden mellem forskellige elementer er positiv, mens afstanden mellem et element og sig selv er nul. Den anden siger, at afstanden mellem to elementer er entydig. Den sidste siger, at hvis man går fra til via , så har man ikke gået kortere end hvis man gik direkte fra til .

Eksempler[redigér | redigér wikikode]

Lad være mængden af punkter i det reelle plan og lad være den sædvanlige afstand. Så er afstanden fra punktet til punktet givet ved

,

som kaldes den euklidiske metrik (eller den form, den tager i to dimensioner). Dette er imidlertid ikke den eneste mulige metrik. F.eks. er

en metrik, da den opfylder kriterierne ovenfor.

Se også[redigér | redigér wikikode]