Forventningsværdi

Fra Wikipedia, den frie encyklopædi
Spring til navigation Spring til søgning

Inden for statistik er forventningsværdien for en stokastisk variabel gennemsnittet af de mulige værdier vægtet mht. sandsynligheden for at variablen antager den værdi. Hvis man gentager et stokastisk eksperiment et stort antal gange, forventer man at gennemsnittet af resultaterne bliver lig forventningsværdien, hvilket man kan bruge til empirisk at estimere forventningsværdier.

Udregning af forventningsværdi[redigér | redigér wikikode]

Hvis der er tale om en diskret variabel, hvor sandsynligheden for udfaldet er , er forventningsværdien givet ved:

Eksempelvis kan man regne forventningsværdien for en ærlig sekssidet terning (som lander på hver af siderne med lige stor sandsynlighed). Her er alle sandsynlighederne lig 1/6 og udfaldene er tallene 1 til 6.

En kontinuert stokastisk variabel med sandsynlighedstæthedsfunktionen siges at have en middelværdi, hvis integralet

er endeligt. I bekræftende fald defineres middelværdien som værdien af integralet

Regneregler for forventningsværdier[redigér | redigér wikikode]

Følgende regneregler gælder for forventningsværdier (hvor er en stokastisk variabel mens og er konstanter):


Hvis man har to stokastiske variable og , gælder:


Hvis og er stokastisk uafhængige, gælder desuden: