Trigonometrisk funktion

Fra Wikipedia, den frie encyklopædi
(Omdirigeret fra Cotangens)
Spring til navigation Spring til søgning

Trigonometrisk funktioner er en matematiske funktioner, som defineres ud fra retningspunkter på enhedscirklen. Derfor kaldes trigonometriske funktioner også for cirkulære funktioner.

I indledende undervisning defineres funktionerne oftest ud fra retvinklede trekanter. Ved hjælp af funktionerne kan man direkte "omregne" en vinkel fra en trekant, til forholdet (kvotienten) mellem to sider i trekanten. De grundliggende trigonometriske funktioner er sinus og cosinus, mens de øvrige er dannet ud fra disse.

Sinus og cosinus[redigér | redigér wikikode]

Uddybende Uddybende artikel: Sinus (matematik)
Uddybende Uddybende artikel: Cosinus
Figur 1: Enhedscirkel
Retvinklet trekant placeret i enhedscirklen
  • Sinus:
  • Cosinus:

Sinus og cosinus kan defineres med brug af en enhedscirkel som er en cirkel i et retvinklet koordinatsystem med centrum i (0,0) og radius 1 (figur 1). cos t og sin t er de funktioner som opfylder at en halvlinje med start i (0,0) med vinklen t i forhold til den positive del af førsteaksen vil skære enhedscirklen i punktet (cos t, sin t). Heraf følger at cos og sin er periodiske funktioner med perioden 2π eller 360° da halvlinjen har samme placering hver gang den har gennemløbet enhedscirklen.

Hvis man placerer en trekant i koordinatsystemet med hjørnerne på punkterne (0,0), (cos t, sin t) og (cos t, 0), ses det at trekanten må være retvinklet med en hypotenuse på 1 (figur 2). Ud fra denne trekant kan udlede at det generelt gælder for retvinklede trekanter at:

  • Sinus til en af de spidse vinkler er lig forholdet mellem vinklens modstående katete og hypotenusen
  • Cosinus til en af de spidse vinkler er lig forholdet mellem vinklens hosliggende katete og hypotenusen

Tangens og cotangens[redigér | redigér wikikode]

Uddybende Uddybende artikel: Tangens
  • Tangens:
  • Cotangens:

Tangens er defineret som , mens cotangens er .

Tangens og cotangens er periodiske med perioden π eller 180°.

For retvinklede trekanter gælder:

  • Tangens til en af de spidse vinkler er lig med forholdet mellem vinklens modstående katete og dens hosliggende katete.
  • Cotangens til en af de spidse vinkler er lig med forholdet mellem vinklens hosliggende katete og dens modstående katete.

Sekans og cosekans[redigér | redigér wikikode]

  • Sekans:
  • Cosekans:

Sekans og cosekans er de reciprokke funktioner til henholdsvis cosinus og sinus:

og .

For retvinklede trekanter gælder:

  • Sekans til en af de spidse vinkler er lig med forholdet mellem hypotenusen og vinklens hosliggende katete.
  • Cosekans til en af de spidse vinkler er lig med forholdet mellem hypotenusen og vinklens modstående katete.

Disse to funktioner bruges stort set ikke i dansksprogede områder, hvor man i stedet bruger regneudtryk med cosinus og sinus.

Navnenes betydning[redigér | redigér wikikode]

Navnene kommer parvis med eller uden præfikset co-. Co- står for komplementær. To vinkler der sammenlagt giver en ret vinkel, kaldes for komplementære vinkler, således er de to spidse vinkler i en retvinklet trekant er altid komplementære. "Co-"-udgaven af en trigonometrisk funktion giver samme funktionsværdi for en vinkel, som udgaven uden "co-" giver for den komplementære vinkel.

Omvendte funktioner[redigér | redigér wikikode]

Hvis man begrænser de trigonometriske funktioners definitionsmængder så de bliver injektive, kan man danne omvendte funktioner. De omvendte funktioner kaldes arcus-funktioner, og deres symboler laves ved at tilføje præfikset arc-: arcsin, arccos, arctan osv.

Grafisk afbildninger[redigér | redigér wikikode]

Nedenfor vises graferne for sinus, cosinus og tangens. X-aksernes værdi udtrykker vinklens størrelse i radianer i forhold til pi, samt den tilsvarende værdi i grader.

Sin proportional.svg Cos proportional.svg Tan proportional.svg

Se også[redigér | redigér wikikode]