Naturligt tal

Fra Wikipedia, den frie encyklopædi
Gå til: navigation, søg

I matematikken er et naturligt tal enten et positivt heltal (1, 2, 3, ...) eller et ikke-negativt heltal (0, 1, 2, ...). Den første definition benyttes ofte af talteoretikere, mens den anden ofte benyttes af mængdeteoretikere, logikere og dataloger.

Mængden af naturlige tal betegnes \mathbb{N} (Unicode ℕ) af de fleste matematikere, uanset om de benytter den første eller sidste definition. Talteoretikere betegner desuden mængden af ikke-negative heltal \mathbb{N}_0 eller \mathbb{N}\cup\{0\}.

Til mængden af naturlige tal er knyttet et mindste element, nemlig tallet 1 (eller 0, efter definition). Da vi endvidere kan definere en ordning på tallene, er de naturlige tal en velordnet mængde. Endvidere gælder induktionsprincippet i de naturlige tal.

De naturlige tal med deres egenskaber er fundamentale for al matematik. Af de naturlige tal kan vi konstruere de hele tal; af disse kommer de rationale tal og f.eks. ved fuldstændiggørelse af disse opstår de reelle tal. I de reelle tal har vi nu supremumsegenskaben, som er fundamental for al analyse.

De naturlige tal er også udgangspunktet for algebra i mere konkret forstand.