Tal

Fra Wikipedia, den frie encyklopædi
Gå til: navigation, søg
(Næsten) naturlige tal

Tal er et abstrakt begreb, der bruges til at angive mængde.

I matematikken findes der mange forskellige tal, for eksempel de naturlige tal, heltal, brøker, rationale tal, irrationale tal, reelle tal, imaginære tal og komplekse tal.

De naturlige tal ℕ (N) som 1, 2, 3, 4... osv. er fundamentale for al matematik; De betegnes eller – hvis man vil præcisere, at tallet 0 medregnes – .

Udvider vi de naturlige tal (inkl. 0) med de negative, hele tal, får vi de hele tal ℤ (Z).

Dette kan igen udvides med de positive og negative brøker til det rationale tallegeme ℚ (Q). Den del af de rationale tal, som kan repræsenteres ved en endelig decimaludvikling, kaldes de decimale tal og benævnes D.

Ved yderligere udvidelse af tallegemet opstår de reelle tal ℝ (R), hvoriblandt findes de irrationale tal som er de reelle tal, der ikke tilhører det rationale tallegeme.

Udvides det reelle tallegeme yderligere med rødderne til de generelle polynomier med komplekse koefficienter, fås det komplekse tallegeme ℂ (C).

Dette kan udtrykkes i den særlige skrifttype blackboard bold således:

Betydningen af begreberne tallegeme og tal kan fastlægges til følgende: Man kalder en uendelig mængde af symboler for et tallegeme, og det enkelte symbol for et tal, hvis mængden opfylder følgende tre betingelser:

  • at de naturlige tal indgår i mængdens elementer
  • at der findes et størrelseskriterium, som kan afgøre om to elementer er lige store (eller hvilket der er størst).
  • at der for to vilkårlige elementer i mængden kan udvikles et skema for at lægge dem sammen og gange dem med hinanden, som har samme egenskaber som de tilsvarende operationer for de naturlige tal (og som reduceres til disse, når de to elementer er naturlige tal). De egenskaber, der her tænkes på, er de grundlæggende egenskaber at være kommutativ, associativ og distributiv.

Visse mængder af tal er bestemt ved særlige egenskaber, for eksempel primtal, kvadrattal, fuldkomne tal og Fibonaccis tal.

Visse tal har særlige egenskaber eller betydninger, som er beskrevet andetsteds i Wikipedia: Kategorien for artikler om bestemte tal indeholder en oversigt over disse artikler.

Her er en lille skala over tal:
0,000 000 000 000 000 000 000 001 = 10−24 = Kvadrilliontedel
0,000 000 000 000 000 000 001 = 10−21 = Trilliardtedel
0,000 000 000 000 000 001 = 10−18 = Trilliontedel
0,000 000 000 000 001 = 10−15 = Billiardtedel
0,000 000 000 001 = 10−12 = Billiontedel
0,000 000 001 = 10−9 = Millardtedel
0,000 001 = 10−6 = Milliontedel
0,001 = 10−3 = Tusindedel
0,01 = 10−2 = Hundrededel
0,1 = 10−1 = Tiendedel
1 = 100 = En
1 0 = 101 = Ti
1 00 = 10² = Hundrede
1 000 = 103 = Tusind
1 000 000 = 106 = Million
1 000 000 000 = 109 = Milliard
1 000 000 000 000 = 1012 = Billion
1 000 000 000 000 000 = 1015 = Billiard
1 000 000 000 000 000 000 = 1018 = Trillion
1 000 000 000 000 000 000 000 = 1021 = Trilliard
1 000 000 000 000 000 000 000 000 = 1024 = Kvadrillion
1 000 000 000 000 000 000 000 000 000 = 1027 = Kvadrilliard
1 000 000 000 000 000 000 000 000 000 000 = 1030 = Kvintillion
1 000 000 000 000 000 000 000 000 000 000 000 = 1033 = Kvintilliard
et et-tal med 100 nuller efter sig = 10100 = Googol
et et-tal med en googol nuller efter sig =10Googol = = Googolplex

Det kan bemærkes, at amerikansk og moderne britisk sprogbrug har en række falske venner blandt de store tal, idet fx "billion" på engelsk betegner 109, altså en dansk milliard, og ikke en dansk billion (1012); se Store tal.

Negative tal[redigér | redigér wikikode]

Negative tal er lidt anderledes end positive tal idet selve begrebet er udtryk for fejl og at der i realiteten ikke er nogle bestemte generelle regneregler for dem. Kun positive tal er fysisk eksisterende.

Alt efter problemstilling er negatives tals betydning blevet omdefineret og tildelt bestemte regneregler for at løse de pågældende fejl.

Et tilfældigt hverdagseksempel kan være løsningen for bankens side og for lånerens side, hvor banken definere renter for at få regnskabet til at gå op og låneren som forsøger at betale det tilbage igen for at få regnskabet til at gå op. Her står det altså for et beløb, som man ikke har, men som man skylder.

Indenfor måleenheder er fejlen oftest at man har sat nulpunktet for langt fremme i talrækken i forhold til den fysiske definition og måske ikke kender det egentlige fysiske nulpunkt, og der er løsningen ofte at omdefinere nulpunktet til at være et tal højere end nul, men med ukendt værdi og behandle de negative tal afspejlet set som positive tal, som de jo egentlig er rent fysisk.

Negative tal kan også skyldes fejl i regnestykket.

Se også[redigér | redigér wikikode]

Eksterne henvisninger[redigér | redigér wikikode]

Commons-logo.svg
Wikimedia Commons har medier relateret til: