Bor (grundstof)

Fra Wikipedia, den frie encyklopædi
Gå til: navigation, søg
Egenskaber
Boron R105.jpg
boron (β-rhombohedralt)[1]
Periodiske system
   
Generelt
Kemisk symbol B Data hentet fra Wikidata. Tryk her for at komme til emnesiden på Wikidata
Atomnummer 5
Elektronkonfiguration  2, 3 Elektroner i hver skal: 2, 3. Klik for større billede.
Gruppe 13 (Halvmetaller)
Periode 2
Blok p
Atomare egenskaber
Atommasse 10,81[2]
(10,806–10,821)[3]
Kovalent radius 82
Elektronkonfiguration 1s² 2s² 2p1
Elektroner i hver skal 2, 3
Kemiske egenskaber
Oxidationstrin 1±0, 2±0, 3±0
Elektronegativitet 2,04
Fysiske egenskaber
Tilstandsform Faststof
Krystalstruktur Rhombisk
Massefylde (fast stof) 2,34
Massefylde (væske) 2,08
Smeltepunkt 2076
Kogepunkt 3927
Smeltevarme 50,2
Fordampningsvarme 480
Varmefylde 11,087
Varmeledningsevne 27,4
Varmeudvidelseskoeff. 5–7
Elektrisk resistivitet 1.5×104
Mekaniske egenskaber
Hårdhed (Mohs' skala) 185
Hårdhed (Vickers) 9,3
Hårdhed (Brinell) 49000
Kilder
Disambig bordered fade.svg For grundstoffet opkaldt efter Niels Bohr, se Bohrium.
Disambig bordered fade.svg For alternative betydninger, se Bor. (Se også artikler, som begynder med Bor)

Bor er et grundstof med symbolet B og atomnummeret 5. Det produceres udelukkende ved kosmisk strålespallation og supernovaer, og ikke gennem stjernenukleosyntese, og der findes således kun meget små længder af det i Solsystemet og Jordens skorpe.[4] Bor koncentreres på Jorden i sine oftest forekommende forbindelser, boratmineralerne, og deres vandopløselighed. Disse udvindes som evaporitter, såsom borax og kernit. De største kendte boraflejringer ligger i Tyrkiet, som også er verdens største producent af bor.

Grundstoffet bor er et halvmetal, der findes i små mængder i meteoroider, men kemisk ikke-bundet bor findes ellers ikke naturligt på Jorden. Det er meget svært at producere bor industrielt på grund af forurening fra carbon eller andre grundstoffer. Der findes flere borallotroper: amorf bor er et brunt pulver; krystallinsk bor er sølv-til-sort, ekstremt hårdt (omkring 9,5 på Mohs' skala), og en dårlig leder ved rumtemperatur. Som grundstof er bors primære anvendelse i borfibre der anvendes meget lig kulfibre i nogle materialer med høj styrke.

Bor anvendes primært i kemiske forbindelser. Omkring halvdelen af alt forbrug af bor på verdensplan er som additiv i glasfibre i form af bor-indeholdende fiberglas til isolering og strukturelle materialer. Det næststørste forbrug er i polymerer og keramik i stærke, lette strukturelle samt ildfaste materialer. Glasvarer af borsilikatglas er eftertragtede for deres store styrke og modstand mod temperaturchok i forhold til almindeligt natronkalkglas. Borforbindelser anvendes som gødning indenfor landbrug og i natriumperborat-blegemidler. En lille mængde bor anvendes som doteringsmiddel i halvledere, og reaktant-mellemprodukt syntese af organiske finkemikalier. Nogle få bor-holdige organiske lægemidler anvendes eller studeres. Naturlig bor består af to stabile isotoper, hvoraf en (bor-10) anvendes som neutron-indfangningsmiddel.

Indenfor biologi er borater kendt for at have lav toksicitet i pattedyr (meget lig bordsalt), men er mere toksisk overfor leddyr, og anvendes derfor som insekticid. Borsyre er mildt antimikrobiel, og der kendes til et bor-holdigt organisk antibiotikum.[5] Bor er livsvigtigt: Små mængder af borforbindelser spiller en styrkende rolle i cellevæggene i alle planter, hvilket gør bor til et essentielt plantenæringsstof. Bor er også involveret i metabolismen af calcium i både planter og dyr. Det betragtes som et essentielt næringsstof for mennesker, og bormangel er blevet impliceret i osteoporose.

Historie[redigér | redigér wikikode]

Ordet bor er en forkortelse af boron, der så til gengæld kommer fra boraks, det mineral hvorfra det blev isoleret, ved analogi med carbon, som bor(on) ligner kemisk.

Boraks, dets mineralform der dengang var kendt som tinkal, blev i glasurform anvendt i Kina allerede i år 300 e.Kr., og en smule råt boraks nåede Vesten, hvor den persiske alkymist Jābir ibn Hayyān tilsyneladende nævnte det i 700 e.Kr. Marco Polo bragte glasur tilbage til Italien i det 13. århundrede. Agricola skrev omkring 1600 om brug af boraks som flux i metallurgi. I 1777 blev borsyre genkendt i de varme kilder (soffioni) nær Firenze, Italien, og blev kendt som sal sedativum, med primært medicinsk brug. Det sjældne mineral kaldes sassolit, og findes i Sasso, Italien. Sasso var den primære europæiske kilde til boraks fra 1827 til 1872, hvorefter amerikanske kilder erstattede det.[6][7] Borforbindelser blev relativt sjældent anvendt før slutningen af 1800-tallet, da Francis Marion Smiths Pacific Coast Borax Company gjorde dem populære og producerede dem billige og i store mængder.[8]

Bor var ikke anerkendt som et grundstof før det blev isoleret af Sir Humphry Davy[9] samt Joseph Louis Gay-Lussac og Louis Jacques Thénard.[10] I 1808 observerede Davy at elektrisk strøm, der blev sendt gennem en boratopløsning, producerede et brunt bundfald på en af elektroderne. I sine efterfølgende eksperimenter anvendte han kalium til at reducere borsyre i stedet for electrolyse. Han producerede nor bor til at kunne bekræfte et nyt grundstof og navngav det boracium.[9] Gay-Lussac og Thénard anvendte jern til at reducere borsyre ved høje temperaturer. Ved at ilte bor med luft viste de at borsyre er et oxideringsprodukt af bor.[10][11] Jöns Jakob Berzelius identified boron as an element in 1824.[12] Ren bor blev sandsynligvis produceret for første gang af den amerikanske kemiker Ezekiel Weintraub i 1909.[13][14][15]

Egenskaber[redigér | redigér wikikode]

Allotroper[redigér | redigér wikikode]

Borstykker

Bor ligner carbon i sin evne til at danne stabile, kovalent bundne molekylære netværk. Selv nominelt uorganiseret (amorf) bor indeholder almindelig bor ikosaeder som dog er bundet tilfældigt til hinanden uden langtrækkende orden.[16][17] Krystallint bor er et meget hårdt, sort materiale med smeltepunkt på mere end 2000 °C. Det danner fire store polymorfer: α-rhomboedrisk og β-rhomboedrisk (α-R and β-R), γ og β-tetragonal (β-T); α-tetragonalfase findes også (α-T), men er meget svær at producere uden betydelig forurening. α, β og T-faserne er baseret på B12-ikosaeder, mens γ-fasen kan beskrives som et stensalt-type arrangement af ikosaederet og B2 atomare par.[18] Det kan produceres ved at sammentrykke andre borfaser til 12–20 GPa og opvarme det til 1500–1800 °C; det forbliver stabilt efter man frigiver temperatur og tryk. T-fasen produceres ved lignende tryk, men højere temperaturer på 1800–2200 °C. Hvad angår α- og β-faserne så kan de begge sameksistere ved standardbetingelser, hvor β-fasen er den mest stabile.[18][19][20] Sammentrykning af bor på mere end 160 GPa producerer en borfase med en endnu ukendt struktur, og denne fase er en superleder ved temperaturer på 6–12 K.[21] Borosferen-molekyler (fulleren-lignende B40) og borofen (formodet grafen-lignende struktur) er blevet beskrevet i 2014.

Borfase α-R β-R γ β-T
Symmetri Rhomboedrisk Rhomboedrisk Orthorhombisk Tetragonal
Atomer/enhedscelle[18] 12 ~105 28
Densitet (g/cm3)[22][23][24][25] 2,46 2,35 2,52 2,36
Vickers' hårdhed (GPa)[26][27] 42 45 50–58
Kompressibilitetsmodul (GPa)[27][28] 185 224 227
Båndgab (eV)[27][29] 2 1,6 2,1

Forekomst og udvinding[redigér | redigér wikikode]

Bor er et forholdsvis sjældent grundstof og udgør kun 0,001 % af jordskorpen. Bor udvindes hovedsageligt fra boraks (borax), Na2B4O5(OH)4·8H2O, og kernit, Na2B4O5(OH)4·2H2O, og store aflejringer, som udvindes kommercielt, findes i Mojave-ørkenen i Californien, USA.[30]

Ekstraktion af bor fra boraks gøres ved først at omdanne boraks til borsyre, B(OH)3 ved tilsætning af svovlsyre, som efterfølgende omdannes til oxidet B2O3 ved opvarmning. Oxidet kan da reduceres med magnesium hvilket giver frit bor, dog forholdsvis urent. Rent bor kan laves ved gasfase-reduktion af BBr3 med H2, eller pyrolyse af diboran, B2H6 eller BI3.[30]

Referencer[redigér | redigér wikikode]

  1. ^ Van Setten et al. 2007, pp. 2460–1
  2. ^ Conventional Atomic Weights 2013. Commission on Isotopic Abundances and Atomic Weights
  3. ^ Standard Atomic Weights 2013. Commission on Isotopic Abundances and Atomic Weights
  4. ^ "Q & A: Where does the element Boron come from?". physics.illinois.edu. Hentet 2011-12-04. 
  5. ^ "The tartrolons, new boron-containing antibiotics from a myxobacterium, Sorangium cellulosum". The Journal of antibiotics 48 (1): 26–30. 1995. doi:10.7164/antibiotics.48.26. PMID 7532644. 
  6. ^ Garrett, Donald E. (1998). Borates: handbook of deposits, processing, properties, and use. Academic Press. pp. 102; 385–386. ISBN 0-12-276060-3. 
  7. ^ Calvert, J. B.. Boron. University of Denver. Hentet 2009-05-05. 
  8. ^ Hildebrand, G. H. (1982) "Borax Pioneer: Francis Marion Smith." San Diego: Howell-North Books. p. 267 ISBN 0-8310-7148-6
  9. ^ a b Fodnotefejl: Ugyldigt <ref>-tag: Der er ikke specificeret nogen fodnotetekst til navnet Davy
  10. ^ a b Fodnotefejl: Ugyldigt <ref>-tag: Der er ikke specificeret nogen fodnotetekst til navnet Lussac
  11. ^ Weeks, Mary Elvira (1933). "XII. Other Elements Isolated with the Aid of Potassium and Sodium: Beryllium, Boron, Silicon and Aluminum". The Discovery of the Elements. Easton, PA: Journal of Chemical Education. s. 156. ISBN 0-7661-3872-0. 
  12. ^ Berzelius produced boron by reducing a borofluoride salt; specifically, by heating potassium borofluoride with potassium metal. See: Berzelius, J. (1824) "Undersökning af flusspatssyran och dess märkvärdigaste föreningar" (Part 2) (Investigation of hydrofluoric acid and of its most noteworthy compounds), Kongliga Vetenskaps-Academiens Handlingar (Proceedings of the Royal Science Academy), vol. 12, pp. 46–98; see especially pp. 88ff. Reprinted in German as: Berzelius, J. J. (1824) "Untersuchungen über die Flußspathsäure und deren merkwürdigste Verbindungen", Poggendorff's Annalen der Physik und Chemie, vol. 78, pages 113–150.
  13. ^ Weintraub, Ezekiel (1910). "Preparation and properties of pure boron". Transactions of the American Electrochemical Society 16: 165–184. 
  14. ^ Fodnotefejl: Ugyldigt <ref>-tag: Der er ikke specificeret nogen fodnotetekst til navnet Laubengayer
  15. ^ Borchert, W.; Dietz, W.; Koelker, H. (1970). "Crystal Growth of Beta–Rhombohedrical Boron". Zeitschrift für Angewandte Physik 29: 277. 
  16. ^ Delaplane, R.G.; Dahlborg, U; Graneli, B; Fischer, P; Lundstrom, T (1988). "A neutron diffraction study of amorphous boron". Journal of Non-Crystalline Solids 104 (2–3): 249–252. doi:10.1016/0022-3093(88)90395-X. Bibcode1988JNCS..104..249D. 
  17. ^ R.G. Delaplane; Dahlborg, U; Howells, W; Lundstrom, T (1988). "A neutron diffraction study of amorphous boron using a pulsed source". Journal of Non-Crystalline Solids 106: 66–69. doi:10.1016/0022-3093(88)90229-3. Bibcode1988JNCS..106...66D. 
  18. ^ a b c Oganov, A.R.; Chen J.; Gatti C.; Ma Y.-M.; Yu T.; Liu Z.; Glass C.W.; Ma Y.-Z.; et al. (2009). "Ionic high-pressure form of elemental boron". Nature 457 (7231): 863–867. doi:10.1038/nature07736. PMID 19182772. Bibcode2009Natur.457..863O. 
  19. ^ van Setten M.J.; Uijttewaal M.A.; de Wijs G.A.; de Groot R.A. (2007). "Thermodynamic stability of boron: The role of defects and zero point motion". J. Am. Chem. Soc. 129 (9): 2458–2465. doi:10.1021/ja0631246. PMID 17295480. 
  20. ^ Widom M.; Mihalkovic M. (2008). "Symmetry-broken crystal structure of elemental boron at low temperature". Phys. Rev. B 77 (6): 064113. doi:10.1103/PhysRevB.77.064113. Bibcode2008PhRvB..77f4113W. 
  21. ^ Eremets, M. I.; Struzhkin, VV; Mao, H; Hemley, RJ (2001). "Superconductivity in Boron". Science 293 (5528): 272–4. doi:10.1126/science.1062286. PMID 11452118. Bibcode2001Sci...293..272E. 
  22. ^ Wentorf Jr, R. H. (1 Jan 1965). "Boron: Another Form". Science 147 (3653): 49–50 (Powder Diffraction File database (CAS number 7440–42–8)). doi:10.1126/science.147.3653.49. PMID 17799779. Bibcode1965Sci...147...49W. 
  23. ^ Hoard, J. L.; Sullenger, D. B.; Kennard, C. H. L.; Hughes, R. E. (1970). "The structure analysis of β-rhombohedral boron". J. Solid State Chem. 1 (2): 268–277. doi:10.1016/0022-4596(70)90022-8. Bibcode1970JSSCh...1..268H. 
  24. ^ Will, G.; Kiefer, B. (2001). "Electron Deformation Density in Rhombohedral a-Boron". Zeitschrift für anorganische und allgemeine Chemie 627 (9): 2100. doi:10.1002/1521-3749(200109)627:9<2100::AID-ZAAC2100>3.0.CO;2-G. 
  25. ^ Talley, C. P.; LaPlaca, S.; Post, B. (1960). "A new polymorph of boron". Acta Crystallogr. 13 (3): 271–272. doi:10.1107/S0365110X60000613. 
  26. ^ Solozhenko, V. L.; Kurakevych, O. O.; Oganov, A. R. (2008). "On the hardness of a new boron phase, orthorhombic γ-B28". Journal of Superhard Materials 30 (6): 428–429. doi:10.3103/S1063457608060117. 
  27. ^ a b c Zarechnaya, E. Yu.; Dubrovinsky, L.; Dubrovinskaia, N.; Filinchuk, Y.; Chernyshov, D.; Dmitriev, V.; Miyajima, N.; El Goresy, A.; et al. (2009). "Superhard Semiconducting Optically Transparent High Pressure Phase of Boron". Phys. Rev. Lett. 102 (18): 185501. doi:10.1103/PhysRevLett.102.185501. PMID 19518885. Bibcode2009PhRvL.102r5501Z. 
  28. ^ Nelmes, R. J.; Loveday, J. S.; Allan, D. R.; Hull, S.; Hamel, G.; Grima, P.; Hull, S. (1993). "Neutron- and x-ray-diffraction measurements of the bulk modulus of boron". Phys. Rev. B 47 (13): 7668–7673. doi:10.1103/PhysRevB.47.7668. Bibcode1993PhRvB..47.7668N. 
  29. ^ Madelung, O., ed (1983). Landolt-Bornstein, New Series. 17e. Berlin: Springer-Verlag. 
  30. ^ a b Housecroft, C.E.; Sharpe, A.G. (2008). Inorganic Chemistry (3rd udg.). Prentice Hall. ISBN 0131755536. 

Eksterne henvisninger[redigér | redigér wikikode]