Brint

Fra Wikipedia, den frie encyklopædi
Gå til: navigation, søg
Egenskaber
Udseende
H,1.jpg
Farveløs gas
Generelt
Navn(e): Hydrogen
Kemisk symbol: H
Atomnummer: 1
Atommasse: 1,00794(7) g/mol
Gruppe: 1
Periode: 1
Blok: s
Elektronkonfiguration: 1s1
Elektroner i hver skal: 1
Atomradius: 25 pm
Kovalent radius: 37 pm
Van der Waals-radius: 120 pm
Kemiske egenskaber
Oxidationstrin: 1, −1
Elektronegativitet: 2,20 (Paulings skala)
Fysiske egenskaber
Tilstandsform: gas
Krystalstruktur: hexagonal
Massefylde (gas): 0,08988 g/L
Smeltepunkt: −259,14 °C
Kogepunkt: −252,87 °C
Kritisk punkt: −240,18 °C, 1,239 MPa
Smeltevarme: (H2) 0.117 kJ/mol
Fordampningsvarme: (H2) 0.904 kJ/mol
Varmefylde: (H2)28.836 J·mol–1K–1
Varmeledningsevne: 180.5 mW m W·m–1K–1
ID-numre
CAS-nummer: 1333-74-0
E-nummer: E-949

Brint eller hydrogen (græsk hydōr "vand" og genes "skaber") er et grundstof med atomnummer 1 i det periodiske system.

Brint er luftformigt ved atmosfærisk tryk. Fri brint optræder som brintmolekyler, H2. Brint er brændbart. Brint kan også bruges som brændstof for f.eks biler.

Brint H har tre kendte isotoper:

  1. Det stabile protium ("almindelig hydrogen") (1H) med én nukleon; en proton.
  2. Det stabile deuterium D (2H) med to nukleoner; en proton og en neutron. Kaldes også tung brint.
  3. Det radioaktive tritium T (3H) med tre nukleoner; én proton og to neutroner. Kaldes supertung brint.

Brint er et af de få brændstoffer der har højere brændværdi end olie og benzin, og det bruges derfor som raketbrændstof i bl.a. de amerikanske rumfærgers interne hovedmotorer. Brint indgår også som væsentlig bestanddel i de molekyler, som olie og benzin består af. Ved forbrænding af brint dannes vand.

Det er blevet anslået, at brint udgør omkring 3/4 af den kendte del af universets masse. På Jorden findes brint primært bundet til andre grundstoffer som i vand og organisk materiale. Der findes en lille smule fri brint i jordens atmosfære (ca. 1 ppm efter volumen). Fri brint fremstilles bl.a. ved elektrolyse af vand.

Det danske navn brint er dannet i 1814 af H.C. Ørsted af ordet brænde, ældre og dial. også brinne (sammenlign ilt). Tidligere blev det kaldt vandstof, der ligesom tysk Wasserstoff er en direkte oversættelse af det græsk-latinske hydrogenium.

Brintatomet[redigér | redigér wikikode]

Brintatomet er det simpleste af alle atomer og har derfor spillet en nøglerolle i atomfysikkens udvikling.

Brintatomet består af en proton og en elektron. Brintatomets kappe rummer altså kun én eneste elektron – større atomer indeholder flere elektroner, hvilket komplicerer den fysiske beskrivelse betydeligt. Brintatomets kerne kan udover protonen indeholde op til to neutroner, men deres eventuelle tilstedeværelse ændrer kun brintatomets egenskaber marginalt.

Brintatomet holdes sammen af den elektriske tiltrækning mellem den positivt ladede proton og den negativt ladede elektron. Størrelsen af den tiltrækkende kraft er givet ved Coulombs lov: F = \frac{1}{4\pi \varepsilon_0}\frac{e^2}{r^2}, hvor e er elementarladningen, r er afstanden mellem elektron og proton, og \varepsilon er vakuumpermittiviteten. Da elektronen er næsten 2000 gange lettere end protonen, kan man med god tilnærmelse antage at protonen ligger stille, eller rettere at elektronen følger protonen i den bevægelse som brintatomet som helhed måtte udføre. Problemet er altså at bestemme hvordan elektronen bevæger sig i forhold til kernen. Brintatomets stabilitet er imidlertid uforklarlig hvis man holder sig inden for rammerne af den klassiske elektromagnetisme. I planetmodellen for brintatomet antages elektronen at udføre en jævn cirkelbevægelse om kernen, men da accelerationen i en sådan bevægelse er forskellig fra nul, ville elektronen udsende elektromagnetisk stråling og gradvis spiralere ind i kernen.

Bohrs model for brintatomet[redigér | redigér wikikode]

Visualisering af elektronskyen om brintatomets kerne. Brintatomet har diskrete energiniveauer (voksende nedefter: n = 1, 2, 3,...). Elektronens impulsmoment er også kvantiseret (voksende mod højre: s, p, d,...). Lyse områder svarer til stor sandsynlighedstæthed.

Niels Bohr løste problemet i 1913 ved at gøre nogle kvantiseringsantagelser. Ifølge Bohrs atommodel kan brintatomet kun befinde sig i såkaldt stationære tilstande svarende til et diskret sæt af energiniveauer. Man kan beregne energien i den n'te stationære tilstand vha. formlen E_n = -\frac{E_0}{n^2}, hvor E_0 er lig 13,6 elektronvolt (eV), og n er et naturligt tal. Heraf følger bl.a. at brintatomets energi i grundtilstanden svarende til n = 1 er -13,6 eV. Man skal altså tilføre brintatomet 13,6 eV for at ionisere det.

I hver af de stationære tilstande antager den gennemsnitlige afstand fra elektronen til kernen en bestemt værdi. Man kan beregne brintatomets radius i den n'te tilstand vha. formlen r_n = n^2 a_0, hvor a_0 er lig 0,529 ångstrøm (Å). I grundtilstanden (n = 1) er den gennemsnitlige afstand fra elektronen til kernen altså 0,529 Å.

Ikke alene energien er kvantiseret, elektronens impulsmoment er det også. Det viser sig at der i den n'te stationære tilstand er n mulige værdier af impulsmomentet, nemlig L = \frac{lh}{2\pi}, hvor h er Plancks konstant, og l = 0,\ldots, n-1. I større atomer svarer forskellige værdier af l til forskellige energiniveauer, men i brintatomet afgøres energien alene af hovedkvantetallet n. Impulsmomentet har imidlertid betydning for hvor man kan forvente at antræffe elektronen hvis man foretager en måling af dens position. l = 0 svarer til kuglesymmetri. I denne tilstand er der endda en vis sandsynlighed for at elektronen befinder sig inde i kernen.

Brintatomets linjespektrum[redigér | redigér wikikode]

Bohrs atommodel forudsiger korrekt bølgelængderne af det lys som findes i brintatomets linjespektrum. Brintatomet kan overgå fra en stationær tilstand (n) til en anden (m) ved absorption af stråling eller spontan emission af elektromagnetisk stråling, hvis fotonenergi er lig forskellen mellem atomets energi i hver af de to stationære tilstande: \varepsilon = E_n - E_m. Ifølge Plancks kvantehypotese er fotonenergien lig h\nu hvor \nu er strålingens frekvens. Det følger heraf at strålingens bølgelængde er givet ved

\frac{1}{\lambda} = \frac{\nu}{c} = \frac{E_n - E_m}{hc} = \frac{-\frac{E_0}{n^2} - \left(-\frac{E_0}{m^2}\right)}{hc} = \frac{E_0\left(\frac{1}{m^2} - \frac{1}{n^2}\right)}{hc} = R\left(\frac{1}{m^2} - \frac{1}{n^2}\right)

med m < n hvor c er lysets hastighed i vakuum, og R = \frac{E_0}{hc} er Rydbergs konstant. Til hver værdi af m svarer en serie af spektrallinjer opkaldt efter fysikere som har ydet bidrag til spektralanalysen:

m Serie Karakteristik
1 Lymans alle ultraviolette
2 Balmer overvejende synlige
3 Paschen alle infrarøde
4 Brackett alle infrarøde
5 Pfund alle infrarøde

Se også[redigér | redigér wikikode]

Eksterne henvisninger og links[redigér | redigér wikikode]

Commons-logo.svg
Wikimedia Commons har medier relateret til: