Tetrahydrocannabinol

Fra Wikipedia, den frie encyklopædi
Gå til: navigation, søg
Scientist.svg Svært stof
Denne artikel omhandler svært stof. Der er endnu ikke taget hensyn til ikke-eksperter. Du kan hjælpe ved at skrive en letforståelig indledning.
Tetrahydrocannabinol
Isomeren (–)-trans-Δ⁹-tetrahydrocannabinol (Dronabinol)
Generelt
Systematisk navn (−)-(6aR,10aR)-6,6,9-trimethyl-3-pentyl-6a,7,8,10a-tetrahydro-6H-benzo[c]chromen-1-ol
Forkortelser THC
Molekylformel C21H30O2
Molarmasse 314,469 g/mol
CAS-nummer 1972-08-3
PubChem 16078
DrugBank DB00470
Kemiske egenskaber
Opløselighed i vand 0,0028 mg/ml [1] (23 °C)
Kogepunkt 157 °C [2]
Farmakologi
Biotilgængelighed 10–35% (inhalering), 6–20% (oral)[3]
Metabolisme Mest lever[3]
Biohalveringstid 1,6–59 h,[3] 25–36 h (oral dronabinol)
Udskillelse 65–80% (fæces), 20–35% (urin)[3]
Hvis ikke andet er angivet, er data givet for
stoffer i standardtilstanden (ved 25 °C, 100 kPa)

Tetrahydrocannabinol (THC) eller dronabinol er det vigtigste psykoaktive stof i hampplanten. Dronabinol er blevet brugt i behandlingen af adskillige sygdomme. I flere lande er det blevet godkendt som lægemiddel mod kvalme og opkast som følge af kemobehandling hos cancer-patienter og mod manglende appetit i forbindelse med anoreksi[4] og kakeksi hos AIDS-patienter.[5] THC blev første gang isoleret i ren form i 1964.[6] Det kan ikke opløses i vand, men derimod i organiske forbindelser som triglycerider (olie/fedt) eller alkohol.[1] Trikomer, plantehår, som også findes på cannabisplanten, kan have betydning som forsvarsmiddel over for planteædere.[7][8] Desuden absorberer THC ultraviolet lys med bølgelængder mellem 280 og 315 nm, hvilket muligvis beskytter planten mod solens skadelige UV-stråling.[9][10][11]

Isomerer og navne[redigér | redigér wikikode]

Nummerering af carbon-atomer i cannabinoider af typen CBN (cannabinol)

Der findes flere isomerer af tetrahydrocannabinol (THC). Den almindeligst forekommende strukturisomer i hamppplanten er Δ⁹-tetrahydrocannabinol (delta-9-tetrahydrocannabinol, delta-9-THC), hvor dobbeltbindingen i cyclohexen-ringen er placeret mellem carbonatom 9 og 10.[12] Denne isomer kaldes også Δ1-tetrahydrocannabinol efter en anden nummereringsmetode. Der findes fire stereoisomerer af Δ⁹-tetrahydrocannabinol. Den eneste naturligt forekommende hedder (–)-trans-Δ⁹-tetrahydrocannabinol.[12]

Ordet tetrahydrocannabinol er sammensat af tetra der betyder 4, hydro der her betyder hydrogen og cannabinol (C21H26O2), et andet cannabinoid.[13] [14]

Dronabinol er INN-navnet for den rene isomer af THC, (–)-trans-Δ⁹-tetrahydrocannabinol.[5][15]

THC i hampplanten[redigér | redigér wikikode]

THC er i hampplanten i hovedsagen koncentreret omkring blomsterne på hunplanten. Blade og hanplanter indeholder kun mindre THC, mens stilk og frø næsten intet indeholder.[12]

I hampplanten findes ikke bare THC, men også adskillige andre cannabinoider. Flere cannabinoider har en euforiserende virkning. Jo længere tid hampplanten får lov til at være i blomst, jo flere af de andre cannabinoider vil planten producere.[kilde mangler]

Anvendelse[redigér | redigér wikikode]

Euforiserende stof[redigér | redigér wikikode]

THC er det aktive stof i hash og marihuana, der får en person til at føle sig "høj", dvs. opleve en rus. Rusen gør, at følsomheden overfor ydre stimuli øges og man oplever detaljer, som normalt vil blive overset, gør at farver synes mere klare og farverige, gør at der frembringes en værdsætning og lyst til at arbejde og gå i dybden med kunst, der tidligere havde en lille eller ingen interesse for personen. Det er som om den voksne cannabis-bruger sanser verden med den samme nyhedsfornemmelse, forundring, nysgerrighed og begejstring som et barn. Beruselsen forstærker også værdsættelsen af musik. Mange jazz- og rockmusikere har sagt, at de spiller bedre under påvirkning af marihuana, men denne effekt er ikke objektivt bekræftet.[kilde mangler]

Når planten når det stadie, hvor der er et større antal andre cannabinoider og mindre THC, vil rusen blive "stenet". Dvs. at den, der indtager det, vil blive slap og udmattet. Nogle foretrækker denne rus som en måde at slappe af på. Derudover vil en "stener"-rus, for nogle fremkalde et enormt behov for indtagelse af mad, der i cannabiskulturen er kendt som "fråderen/ædeflip" og på engelsk "munchies". Denne rus indtræder når THC oxygerer til 11-OH-THC. Den stenede rus forsvinder og er ikke eksisterende når THC modsvares med et højt indhold bl.a. af cannabinoiderne CBD (cannabidiol) og THCV (tetrahydrocannabivarin) som holder psykisk THC-aktivitet nede (antagonister af CB1-receptorer).[kilde mangler]

Lægemiddel[redigér | redigér wikikode]

Som nævnt i et amerikansk patent tildelt The United States of America, har cannabinoider vist sig at have antioxidant-egenskaber uden forbindelse til NMDA-receptormodstand. Denne nyligt fundne egenskab kan gøre cannabinoider brugbare i behandling og forebyggende behandling (profylakse) af en bred vifte af oxyderingsassocierede sygdomme, såsom iskæmi og aldersrelaterede betændelses- og autoimmune sygdomme. Cannabinoiderne har vist sig at have særlig anvendelse som neurobeskytter for eksempel ved at begrænse nervebeskadigelse fremkommet efter iskæmiske skader, såsom apopleksi (slagtilfælde) og traumer, eller i behandlingen af neuro-degenerative sygdomme, såsom Alzheimers, Parkinsons og HIV-demens.[16] Firmaet KannaLife har fået eksklusive rettigheder til at udvikle lægemiddler til behandling af human hepatisk encefalopati og kronisk traumatisk encefalopati baseret på dette patent.[17]

Mange G-protein-koblede receptorer reagerer med cannabinoider, der derved griber ind i mange af organismens funktioner.[18]

Et forskningsprojekt foretaget af overlæge René Støving og Ph.D Alin Andries ved Odense Universitetshospital har påvist at patienter med svært kronisk anoreksi kan tage på i vægt, ved hjælp af behandling med tetrahydrocannabinol, baseret på viden om at stoffet har vist sig at have god effekt på appetitcentret hos cancer- og HIV-patienter.[19][4]. Ved medicinsk brug udvælges Cannabis-sorter efter THC-indhold og CBD-, CBN-, CBG- og THCV-indholdet.[kilde mangler]

Farmakologiske egenskaber[redigér | redigér wikikode]

Farmakokinetik[redigér | redigér wikikode]

Aromatisk ring-bindings-forbindelser i strukturen af carboxyl-fedtsyren Tetrahydrocannabinol: C21H30O2

Ved rygning absorberes THC hurtigt fra lungeoverfladen, og kan måles i plasmaet få sekunder efter det første hiv. Biotilgængeligheden af THC i organismen afhænger af dybden og varigheden af inhalationen, samt hvor længe den inhalerede røg holdes i lungerne. Det anslås at THC-biotilgængeligheden ligger på 23-27% hos faste rygere og 10-14% for lejlighedsvise rygere.[20] I modsætning til rygning er absorptionen efter spisning langsommere og biotilgængeligheden lavere, formentligt pga. omfattende metabolisme i leveren, som det passerer efter optagelse fra tarmen.[20]

Cirka 90% af den tilgængelige THC transporteres rundt i organismen med plasmaet, mens resten er bundet til de røde blodlegemer. På grund af sin høje fedtopløselighed fordeles THC til fedtvæv og organer med stor blodgennemstrømning som hjerne, muskel, lever, lunge og milt, hvilket leder til et pludseligt fald i plasmakoncentrationen. Her frigives det langsomt fra vævet til det er blevet akkumuleret tilbage til blodbanen (et fænomen kaldet redistribution).[20]

Nedbrydningsprodukter[redigér | redigér wikikode]

THC metaboliseres i leveren ved hydroxylering og oxidation katalyseret af CYP450-enzymer. Ud fra dette dannes flere hundreder nedbrydningsprodukter, hvor 11-OH-THC (hydroxy-produktet) og THC-COOH (oxidationsproduktet) er de mest dominerende. 55% af THC udskilles med fæces og cirka 20% med urinen. Hovedmetabolitten i fæces er 11-OH-THC, mens hovedmetabolitten i urinen er THC-COOH eller THC-OOH esterbundet med glukeronsyre.[21]

11-OH-THC (C21H30O3) er psykoaktiv, men virkningerne er ikke nødvendigvis identiske med dem set i THC, hvilket til dels forklarer de bifasiske effekter af cannabis, hvor nogle effekter, såsom øget appetit, har tendens til at blive forsinket, i stedet for at optræde umiddelbart efter lægemidlet/stoffet indtages.

THC-COOH (C21H28O4) er ikke psykoaktiv i sig selv, men har en lang halveringstid i kroppen på op til flere dage (eller endda uger hos kroniske brugere). Det er den vigtigste testede metabolit, når blod eller urin undersøges for brug af cannabis (cannabinoider: Receptor-proteiner). Denne fremgangsmåde er blevet kritiseret[hvem?] som ensbetydende med forbud mod "at køre bil samtidig med at være regelmæssig bruger af cannabis" uanset tilstedeværelsen eller fraværet af eventuelle faktiske forringelser, der kan påvirke køreevnen.[kilde mangler]

THC i trafikken[redigér | redigér wikikode]

I Danmark er der i færdselslovens § 54 stk. 1 nultolerance over for kørsel under påvirkning af euforiserende stoffer.[22] 2.000 bilister blev frakendt kørekortet i 2013 for hashkørsel,[23] fordi der blev fundet spor af THC, 11-OH-THC eller THC-COOH i deres blod.[kilde mangler]

DTU Transport har deltaget i en stor international undersøgelse af, om man er til fare for sig selv og andre i trafikken, hvis man er påvirket af stoffer. Undersøgelsen viser at man, under påvirkning af cannabis, har en risiko svarende til en lav alkoholrus, men det indskærpes også at resultaterne skal ses i lyset af at der er få sager, og at de derfor skal behandles med varsomhed.[24][25] TIl MetroXpress udtalte seniorforsker Inger Marie Bernhoft i den anledning, at konklusionen er entydig, »Hvis man er påvirket af hash på et niveau på bagatelgrænsen, er der ikke nogen dokumentation for, at der er en øget risiko for uheld i trafikken.«[23]

Andre studier viser THC, afhængig af forbrugets størrelse og frekvens, alvorligt kan forringe evnerne til at køre, men at det også er meget individuelt i hvilken grad det sker.[26][27]

Den amerikanske læge og marihuana-ekspert David Bearman har gennemgået en række undersøgelser og konkluderer i de tilfælde, hvor man skal afgøre om en person har indtaget marihuana og om en person kan føre et motorkøretøj, at "Blodkoncentrationer kan være noget mere nyttige [end urinprøver], i det mindste kan de hjælpe med at afgøre, om man har brugt marihuana for nylig.[...] Høje niveauer af THC i blodet (≤ 10ng/ml) er et godt tegn på at man har brugt marihuana inden for den sidste time eller to. Problemerne er, at (1) blodniveauer er meget variable og (2) har ingen klar relation til den faktiske forringelse af evner, dvs det at "være påvirket."[28]

Andre virkninger[redigér | redigér wikikode]

Mens THC-COOH ikke har nogen psykoaktive virkninger, kan det stadig have en rolle i analgetiske og anti-inflammatoriske virkninger af cannabis, og har også vist sig at moderere virkningerne af THC, en form kaldet antagonisme, hvilket kan hjælpe med at forklare forskellen i subjektive virkninger, der ses mellem lejlighedsvise og regelmæssige brugere af cannabis.[kilde mangler]

Δ-9-tetrahydrocannabinol (Δ-9-THC) og THC-COOH har også vist sig at undertrykke åreforkalkning (den hyppigste årsag til dødsfald i Danmark; hvert år dør 23.000 danskere af hjerte-karsygdomme) ved at være en direkte hæmmer til 15-lipoxygenase (15-LOX), en af de vigtigste enzymer, der er ansvarlige for dannelsen af oxideret lav-densitet lipoprotein, en væsentlig medvirkende årsag til åreforkalkning.[kilde mangler]

Desuden har in vitro-eksperimenter med delta-9-THC vist sig yderst effektive til at reducere oxidative skader i rygmarvskulturer hos mus. Derudover er delta-9-THC anti-excitotoksisk in vitro. Disse cellulære mekanismer kan ligge til grund for den formodede neuro-beskyttende effekt i amyotrofisk lateral sklerose (ALS). Idet delta-9-THC er en veltolereret dobbeltbindings-isomer, kan det og andre cannabinoider fra hamp vise sig at være hidtil ukendte terapeutiske midler til behandling af ALS. Cathy Jordan fra Florida i USA har overlevet ALS i 22 år med høj livskvalitet ved brug af cannabis (marihuana) som lægemiddel.[kilde mangler]

Samspil med det endocannabinoide system[redigér | redigér wikikode]

Question book-4.svg Der er få eller ingen kildehenvisninger i dette afsnit. Du kan hjælpe ved at angive kilder til de påstande som fremføres i artiklen.

Det endocannabinoide system er en gruppe neuromodulatoriske lipider og deres receptorer i hjernen, der er involveret i en række fysiologiske processer, herunder appetit, smertefølelse, humør og hukommelse, og det medierer psykoaktive og farmakologiske virkninger af cannabis.

Det endocannabinoide system er blevet undersøgt ved hjælp af genetiske og farmakologiske metoder. Disse undersøgelser har påvist, at cannabinoider virker som neuromodulatorer for en række fysiologiske processer, herunder motorisk indlæring, synaptisk plasticitet, appetit, og smertesans.

Kvantificering af anandamid- og 2-arachidonoylglycerol-plasmaniveauer er i 2013 blevet undersøgt for potentielle påvirkninger af tetrahydrocannabinols (THC's) nyttevirkning på det endocannabinoide system hos mennesker, med elleve blodprøver, der blev udtaget i løbet af de første 5 timer efter THC administration og to yderligere prøver efter 24 og 48 timer. THC, dets metabolitter THC-OH (biologisk aktivt) og THC-COOH (ikke aktiv) og EC'erne anandamide og 2-arachidonoylglycerol (2-AG) blev kvantificeret ved væskekromatografi-massespektrometri.

EC-plasmaniveauerne viste en bifasisk respons efter THC injektion og nåede maksimale værdier på 30 min. Anandamid steg en smule fra 0,58 ± 0,21 ng/ml ved baseline til 0,64 ± 0,24 ng/ml (p <0,05) og 2-AG fra 7,60 ± 4,30 ng/ml til 9,50 ± 5,90 ng/ml (p <0,05). Efter at have nået maksimale koncentrationer, blev EC plasmaniveauer markant nedsat til et lavpunkt på 300 min efter THC administration (til 0,32 ± 0,15 ng/ml for anandamid og til 5,50 ± 3,01 ng/ml for 2-AG, p <0,05). EC plasmakoncentrationer vendte tilbage til nær baselineniveauer 48 timer efter forsøget. THC (0,76 ± 0,16 ng/ml) og THC-OH (0,36 ± 0,17 ng/ml) var stadig målbare ved 24 timer og forblev påviselig indtil 48 timer efter THC administration.Selvom den underliggende mekanisme ikke er klar, synes høje doser af intravenøs THC at have indflydelse på endogene cannabinoid-koncentrationer og formentlig EC-signalering.[29]

Desuden viser forskning fremført i 2012, at både eksogene og endogene cannabinoider kan modulere glycin (C2H5NO2)-receptorer (GlyRs) allosterisk. Men lidt er kendt om det molekylære grundlag for cannabinoid-GlyR interaktioner, hvorfor der her vises, at vedvarende inkubation med endocannabinoiden anandamide (AEA: C22H37NO2) væsentligt øger amplituden af den glycin (α-aminosyre)-aktiverede strøm i både rotte dyrkede neuroner i rygmarven og i HEK-293-celler, der udtrykker human α1, rotte α2 og α3 GlyRs.

Størrelsen af AEA potensering faldt med fjernelse af enten hydroxyl-eller oxygen-grupper på AEA. Mens desoxy-AEA var signifikant mindre effektiv i potensering af I (Gly), hæmmede desoxy-AEA potensering fremstillet af både Δ(9)-tetrahydrocannabinol (THC: C21H30O2), en betydelig psykoaktiv bestanddel af marihuana, og AEA. Tilsvarende påvirkede didesoxy-THC, en modificeret THC med fjernelse af både hydroxyl/oxygengrupper, ikke I (Gly), når de anvendes alene, men inhiberede potensering af I (Gly) induceret af AEA og THC. Disse resultater tyder på, at eksogene og endogene cannabinoider potenserer GlyRs via hydrogenbindings-lignende interaktion. En sådan specifik interaktion stammer sandsynligvis fra et fælles molekylær grundlag.[30]

Se også[redigér | redigér wikikode]

Noter[redigér | redigér wikikode]

  1. ^ a b "Physicochemical properties, solubility, and protein binding of Δ9-tetrahydrocannabinol". J. Pharm. Sci. 63 (7): 1056–64. July 1974. doi:10.1002/jps.2600630705. PMID 4853640. 
  2. ^ "Cannabis and cannabis extracts: greater than the sum of their parts?". Journal of Cannabis Therapeutics 1 (3/4): 103–132. 2001. doi:10.1300/J175v01n03_08. 
  3. ^ a b c d Grotenhermen, F (2003). "Pharmacokinetics and pharmacodynamics of cannabinoids". Clin Pharmacokinet 42 (4): 327–60. doi:10.2165/00003088-200342040-00003. PMID 12648025. 
  4. ^ a b Andries A (1. januar 2014). "Dronabinol in severe, enduring anorexia nervosa: a randomized controlled trial". The International Journal of Eating Disorders 47 (1): 18–23. doi:10.1002/eat.22173. PMID 24105610. Hentet 2017-97-29. 
  5. ^ a b 34th Expert Committee on Drug Dependence (ECDD) 2006 Assessment of dronabinol and its stereo-isomers. Hentet 25. april 2017.
  6. ^ "Isolation, structure and partial synthesis of an active constituent of hashish". Journal of the American Chemical Society 86 (8): 1646–1647. 1964. doi:10.1021/ja01062a046. 
  7. ^ Tian D (1. oktober 2012). "Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum)". Planta 236 (4): 1053–1066. doi:10.1007/s00425-012-1651-9. PMID 22552638. Hentet 30. juli 2017. 
  8. ^ Pate, David W. (1994). "Chemical ecology of Cannabis". Journal of the International Hemp Association 1 (29): 32–37. 
  9. ^ Pate, David W. (1983). "Possible role of ultraviolet radiation in evolution of Cannabis chemotypes". Economic Botany 37 (4): 396–405. doi:10.1007/BF02904200. 
  10. ^ Lydon, John; Teramura, Alan H. (1987). "Photochemical decomposition of cannabidiol in its resin base". Phytochemistry 26 (4): 1216–1217. doi:10.1016/S0031-9422(00)82388-2. 
  11. ^ "UV-B radiation effects on photosynthesis, growth and cannabinoid production of two Cannabis sativa chemotypes". Photochemistry and Photobiology 46 (2): 201–206. 1987. doi:10.1111/j.1751-1097.1987.tb04757.x. PMID 3628508. 
  12. ^ a b c Cannabis drug profile European Monitoring Centre for Drugs and Drug Addiction
  13. ^ Eduardo Lauande (27 nov. 2016). What does the 'tetrahydro-" part of THC refer to specifically? Four hydrogens where?. Hentet 25. april 2017.
  14. ^ answers.yahoo.com: What does the delta mean in Δ9-tetrahydrocannabinol?. Hentet 25. april 2017.
  15. ^ (PDF)List of psychotropic substances under international control. International Narcotics Control Board. p. 5. Arkiveret fra originalen 7. september 2005. Hentet 20. april 2011. "This international non-proprietary name refers to only one of the stereochemical variants of delta-9-tetrahydrocannabinol, namely (−)-trans-delta-9-tetrahydrocannabinol" 
  16. ^ Hampson, et al. (7. oktober 2003) (på engelsk). United States Patent: 6630507 - Cannabinoids as antioxidants and neuroprotectants. United States Patent and Trademark Office. Hentet 29. juli 2017. 
  17. ^ Prospective Grant of Exclusive License: Development of Cannabinoid(s) and Cannabidiol(s) Based Therapeutics To Treat Hepatic Encephalopathy in Humans.. 17. november 2011. Hentet 29. juli 2017. 
  18. ^ Grotenhermen, F (2003). "Pharmacokinetics and pharmacodynamics of cannabinoids". Clin Pharmacokinet 42 (4): 327–60. doi:10.2165/00003088-200342040-00003. PMID 12648025.  Citat (oversat):"Delta (9)-tetrahydrocannabinol (THC) er den vigtigste kilde til de farmakologiske virkninger af indtagelse af cannabis, både den marihuana-lignende handling og de medicinske fordele af planten. Men dens syre-metabolit THC-COOH, den ikke-psykotrope cannabidiol (CBD), flere cannabinoid analoger og nyopdagede modulatorer af det endogene cannabinoidsystem, er også lovende kandidater til klinisk forskning og terapeutiske anvendelser. Cannabinoider udøver mange virkninger ved aktivering af G-protein-koblede cannabinoid-receptorer i hjernen og de perifere væv. Derudover er der evidens for ikke-receptor-afhængige mekanismer. [...] Eksistensen og intensiteten af ​​mulige langsigtede negative virkninger på psyke og kognition, immunsystemet, frugtbarhed og graviditet forbliver kontroversiel. De er rapporteret til at være lav i mennesker og udelukker ikke lovlig terapeutisk anvendelse af cannabis-baserede lægemidler. Egenskaber af cannabis, der kan være af terapeutisk brug omfatter analgesi, muskelafslapning, immunosuppression, sedation, forbedring af humør, stimulering af appetit, antiemesis, sænkning af det intraokulære tryk, bronkodilation, neurobeskyttelse og induktion af apoptose i kræftceller."
  19. ^ "Anoreksi-forskning med udfordringer - www.ouh.dk". www.ouh.dk. 27. november 2013. Hentet 29. juli 2017. 
  20. ^ a b c Sharma, Priyamvada (2012). "Chemistry, Metabolism, and Toxicology of Cannabis: Clinical Implications". Iran J Psychiatry 7 (4): 149-56. PMID 23408483. 
  21. ^ Huestis, M. A. (2005). "Pharmacokinetics and Metabolism of the Plant Cannabinoids, Δ9-Tetrahydrocannibinol, Cannabidiol and Cannabinol". Cannabinoids. Handbook of Experimental Pharmacology 168 (168): 657–90. doi:10.1007/3-540-26573-2_23. ISBN 3-540-22565-X. PMID 16596792. 
  22. ^ Færdselsloven - Bekendtgørelse af færdselsloven - Førere af køretøjer m.v. - retsinformation.dk. 5. januar 2017. Hentet 30. juli 2017. 
  23. ^ a b metroexpress, 20. dec. 2013: Ryg hash i dag - mist kørekortet i næste uge Hentet 20. april 2017.
  24. ^ {{cite web | url = http://orbit.dtu.dk/files/51557158/Prevalence_and_risk_of_driving.pdf | title= Prevalence and risk of driving under influence of psychoactive substances: Results from epidemiological studies [Sound/Visual production (digital)]. 7th General Police Equipment Exhibition & Conference (GPEC), Leipzig, Germany | accessdate = 30. juli 2017 | date = 11. september 2012
  25. ^ "Druid-Project - Final Conference - Tove Hels and Inger Marie Bernhoft: Risk of serious injury and death for drivers positive for drugs". Druid-Project. 25. november 2011. Hentet 30. juli 2017. 
  26. ^ R. Andrew Sewell (1. maj 2010). "THE EFFECT OF CANNABIS COMPARED WITH ALCOHOL ON DRIVING". The American journal on addictions / American Academy of Psychiatrists in Alcoholism and Addictions 18 (3): 185–193. doi:10.1080/10550490902786934. PMID 19340636. PMC: PMC2722956. Hentet 30. juli 2017. 
  27. ^ M Asbridge (9. februar 2012). "Acute cannabis consumption and motor vehicle collision risk: systematic review of observational studies and meta-analysis". BMJ 344: e536. doi:10.1136/bmj.e536. PMID 22323502. PMC: PMC3277079. Hentet 30. juli 2017. 
  28. ^ Dr. David Bearman formation for CPS, Probation, etc. on Marijuana "Addiction" and Marijuana & Driving Hentet 20. april 2017. (engelsk) Citat: Blood concentrations are somewhat more useful in that they can at least help determine whether one has used marijuana recently. As noted in the references cited by Kevin, high levels of blood THC, (< = 10 ng/ml), are a good telltale sign of having used marijuana in the last hour or two. The problems are that (1) blood levels are highly variable and (2) have no clear-cut relation to actual impairment, i.e., “being under the influence.”
  29. ^ Kvantificering af anandamid og 2-arachidonoylglycerol plasmaniveauer til at undersøge potentielle påvirkninger af tetrahydrocannabinols virkning på det endocannabinoide system hos mennesker. - Drug Test Anal. 2014, Januar (engelsk)
  30. ^ En fælles molekylær basis for eksogen og endogen cannabinoid potensering af glycin-receptorer - J Neurosci. 2012 April. (engelsk)

Eksterne henvisninger[redigér | redigér wikikode]